• Title/Summary/Keyword: multi-resistant

Search Result 364, Processing Time 0.022 seconds

Multi-Core Fiber Based Fiber Bragg Gratings for Ground Based Instruments

  • Min, Seong-Sik;Lindley, Emma;Leon-Saval, Sergio;Lawrence, Jon;Bland-Hawthorn, Joss
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2015
  • Fiber Bragg gratings (FBGs) are the most compact and reliable method of suppressing atmospheric emission lines in the infrared for ground-based telescopes. It has been proved that real FBGs based filters were able to eliminate 63 bright sky lines with minimal interline losses in 2011 (GNOSIS). Inscribing FBGs on multi-core fibers offers advantages. Compared to arrays of individual SMFs, the multi-core fiber Bragg grating (MCFBG) is greatly reduced in size, resistant to damage, simple to fabricate, and easy to taper into a photonics lantern (PRAXIS). Multi-mode fibers should be used and the number of modes has to be large enough to capture a sufficient amount of light from the telescope. However, the fiber Bragg gratings can only be inscribed in the single-mode fiber. A photonic lantern bi-directionally converts multi-mode to single-mode. The number of cores in MCFBGs corresponds to the mode. For a writing system consisting of a single ultra-violet (UV) laser and phase mask, the standard writing method is insufficient to produce uniform MCFBGs due to the spatial variations of the field at each core within the fiber. Most significant technical challenges are consequences of the side-on illumination of the fiber. Firstly, the fiber cladding acts as a cylindrical lens, narrowing the incident beam as it passes through the air-cladding interface. Consequently, cores receive reduced or zero illumination, while the focusing induces variations in the power at those that are exposed. The second effect is the shadowing of the furthest cores by the cores nearest to the light source. Due to a higher refractive index of cores than the cladding, diffraction occurs at each core-cladding interface as well as cores absorb the light. As a result, any core that is located directly behind another in the beam path is underexposed or exposed to a distorted interference pattern from what phase mask originally generates. Technologies are discussed to overcome the problems and recent experimental results are presented as well as simulation results.

  • PDF

A novel ID-based multi-domain handover protocol for mesh points in WMNs

  • Zhang, Xue;Li, Guangsong;Han, Wenbao;Ji, Huifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2512-2529
    • /
    • 2015
  • Wireless mesh networks (WMNs) provide an efficient and flexible method to the field of wireless networking, but also bring many security issues. A mesh point may lose all of its available links during its movement. Thus, the mesh point needs to handover to a new mesh point in order to obtain access to the network again. For multi-domain WMNs, we proposed a new ID-based signcryption scheme and accordingly present a novel ID-based handover protocol for mesh points. The mutual authentication and key establishment of two mesh points which belong to different trust domains can be achieved by using a single one-round message exchange during the authentication phase. The authentication server is not involved in our handover authentication protocol so that mutual authentication can be completed directly by the mesh points. Meanwhile, the data transmitted between the two mesh points can be carried by the authentication messages. Moreover, there are no restrictions on the PKG system parameters in our proposed multi-domain ID-based signcryption scheme so our handover scheme can be easily applied to real WMNs circumstances. Security of the signcryption scheme is proved in the random oracle model. It shows that our protocol satisfies the basic security requirements and is resistant to existing attacks based on the security of the signcryption. The analysis of the performance demonstrates that the protocol is efficient and suitable for the multi-domain WMNs environment.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.

Time Constant Control Method for Hopfield Neural Network based Multiuser Detector of Multi-Rate CDMA system (시정수 제어 기법이 적용된 Multi-Rate CDMA 시스템을 위한 Hopfield 신경망 기반 다중 사용자 검출기)

  • 김홍열;장병관;전재춘;황인관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6A
    • /
    • pp.379-385
    • /
    • 2003
  • In this paper, we propose a time constant control method for sieving local minimum problem of the multiuser detector using Hopfield neural network for synchronous multi-rate code division multiple access(CDMA) system in selective fading environments and its performance is compared with that of the parallel interference cancellation(PIC). We also assume that short scrambling codes of 256 chip length are used an uplink, suggest a simple correlation estimation algorithm and circuit complexity reduction method by using cyclostationarity property of short scrambling code.It is verified that multiuser detector using Hopfield neural network more efficiently cancels multiple access interference(MAI) and obtain better bit error rate and near-far resistant than conventional detector.

Collapse-resistant performance of a single-story frame assembly and multi-story sub-frame under an internal column-removal scenario

  • Zhong, Wei-hui;Tan, Zheng;Tian, Li-min;Meng, Bao;Zheng, Yu-hui;Daun, Shi-chao
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.663-679
    • /
    • 2021
  • To elucidate the differences in the collapse behavior between a single-story beam-column assembly and multi-story frame, two 1/3-scale two-bay composite frames, including a single-story composite beam-column assembly and a three-story composite sub-frame, were designed and quasi-statically tested. The load-displacement responses, failure modes, and internal force development of the two frames were analyzed and compared in detail. Furthermore, the resistance mechanisms of the two specimens were explored, and the respective contributions of different load-resisting mechanisms to the total resistances were quantitatively separated to gain deeper insights. The experimental tests indicated that Vierendeel action was present in the two-dimensional multi-story frames, which led to an uneven internal force distribution among the three stories. The collapse resistance of TSDWA-3S in the flexural stage was not significantly increased by the structural redundancy provided by the additional story, as compared to that of TSDWA-1S. Although the development of the load response was similar in the two specimens at flexural stage, the collapse mechanisms of the multi-story composite frame were much more complicated than those of the single-story beam-column assembly, and the combined action between stories was critical in determining the internal force redistribution and rebalancing of the remaining structure.

Reinforced concrete structures with damped seismic buckling-restrained bracing optimization using multi-objective evolutionary niching ChOA

  • Shouhua Liu;Jianfeng Li;Hamidreza Aghajanirefah;Mohammad Khishe;Abbas Khishe;Arsalan Mahmoodzadeh;Banar Fareed Ibrahim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.147-165
    • /
    • 2023
  • The paper contrasts conventional seismic design with a design that incorporates buckling-restrained bracing in three-dimensional reinforced concrete buildings (BRBs). The suboptimal structures may be found using the multi-objective chimp optimization algorithm (MEN-ChOA). Given the constraints and dimensions, ChOA suffers from a slow convergence rate and tends to become stuck in local minima. Therefore, the ChOA is improved by niching and evolutionary operators to overcome the aforementioned problems. In addition, a new technique is presented to compute seismic and dead loads that include all of a structure's parts in an algorithm for three-dimensional frame design rather than only using structural elements. The performance of the constructed multi-objective model is evaluated using 12 standard multi-objective benchmarks proposed in IEEE congress on evolutionary computation. Second, MEN-ChOA is employed in constructing several reinforced concrete structures by the Mexico City building code. The variety of Pareto optimum fronts of these criteria enables a thorough performance examination of the MEN-ChOA. The results also reveal that BRB frames with comparable structural performance to conventional moment-resistant reinforced concrete framed buildings are more cost-effective when reinforced concrete building height rises. Structural performance and building cost may improve by using a nature-inspired strategy based on MEN-ChOA in structural design work.

Characteristics of Methicillin-resistant Staphylococcus aureus Nasal Colonization Among Neonatal Unit Staff and Infection Control Measures (일개 병원 신생아실 근무 의료인에서 시행한 비강 내 MRSA 집락의 특성 및 전파예방에 관한 보고)

  • Kim, Dong Hwan;Kim, Sun Mi;Park, Ji Young;Cho, Eun Young;Choi, Chang Hee
    • Pediatric Infection and Vaccine
    • /
    • v.16 no.2
    • /
    • pp.131-141
    • /
    • 2009
  • Purpose : In February 2007, an outbreak of methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections occurred in two newborns in the neonatal unit of Sahmyook Seoul Hospital. We performed this study to investigate the characteristics of MRSA nasal carriage among neonatal unit staffs and the effective infection control measures. Methods : Nasal swab specimens were obtained from the neonatal unit staff for the presence of MRSA. MRSA-colonized staffs were offered decolonization therapy with oral trimethoprim-sulfamethoxazole or 2% mupirocin ointment. Every 2-4months after decolonizaton, repeat nasal swab specimens were obtained. Also, samples from the neonatal unit environment and room air were collected. Results : Successful decolonization was achieved in 92% of the cases in 2 weeks after decolonization therapy, but most of the staffs were recolonized after several months. The nature of antibiotic susceptibility was changed from multi-drugsusceptible to multi-drug-resistant. The most frequently contaminated objects were dressing carts, computer keyboards, bassinets and washbowls. In environmental cultures using the settle microbe count method, the colony counts were decreased significantly at the last study period compared with the first study period in the neonatal room, breastfeeding room, service room, and dressing room (P <0.05). Conclusion : Effective control of sustained MRSA transmission within an institution may require prompt identification, treatment, and monitoring of colonized and/or infected staffs. However, nasal decolonization therapy may induce multi-drugresistant MRSA infection and had no effect on decreasing the MRSA nasal carriage rate in our study. Other factors might be more important, such as improving staff education, increasing hand hygiene practices, and environmental sterilization for controlling MRSA infections.

  • PDF

Non-typhoidal Salmonella Gastroenteritis in Childhood: Clinical Features and Antibiotics Resistance (소아에서 비장티푸스성 살모넬라 위장관염의 임상양상과 항생제 내성률에 대한 연구)

  • Na, So-Young;Kim, Byung-Chan;Yang, Hye-Ran;Jung, Soo-Jin;Lee, Kyung-Hoon;Ko, Jae-Sung;Lee, Hoan-Jong;Kim, Eui-Chong;Seo, Jeong-Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.5 no.2
    • /
    • pp.150-157
    • /
    • 2002
  • Purpose: As the incidence of non-typhoidal salmonella strains resistant to antibiotics has been increased, we attempted to investigate clinical aspects of non-typhoidal salmonella gastroenteritis and antibiotics resistance. Methods: From January 2000 to June 2002, 99 children with positive stool culture of non-typhoidal salmonella were studied about clinical features, the incidence of antibiotics and multi-drug resistance and the difference of incidence of antibiotics resistance according to immune status. Results: There were 66 males and 33 females. The majority of them were under 5 years of age (71%). 25 children were immunocompromised due to chemotherapy, steroid or immunosuppressive treatment. Serogroup D was the most common isolates (65%) followed by B (16%), C (8%) and E (8%). Resistance rate of 30% to ampicillin, 12% to chloramphenicol, 20% to trimethoprim-sulfamethoxazole (TMP-SMX), 11% to cefotaxime and 8% to cefixime were obtained. All isolates were susceptible to ciprofloxacine. Resistance rate to cefotaxime and cefixime in immunocompromised patients was 24% and 14.3% respectively, which were significantly higher compared to that in immunocompetent patients (6.8%, 5.6%, p<0.05). 11 isolates were resistant to three or more antibiotics. The incidence of multi-drug resistant isolates was significantly higher in immunocompromised patients (24%) than that of immunocompetent patients (6.8%). Conclusion: Because of the high prevalence of non-typhoidal salmonella strains resistant to ampicillin, chloramphenicol and TMP-SMX, third-generation cephalosporin might be the treatment of choice in non-typhoidal salmonella gastroenteritis. In particular, antibiotics should be carefully selected in immunocompromised patients because non-typhoidal salmonellas from them showed the higher incidence of antibiotic resistance and multi-drug resistance.

  • PDF

EGF Reverses Multi-drug Resistance via the p-ERK Pathway in HepG2/ADM and SMMC7721/ADM Hepatocellular Carcinoma Models

  • Yan, Feng;Bai, Li-Ping;Gao, Hua;Zhu, Chang-Ming;Lin, Li;Kang, Xiang-Peng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2619-2623
    • /
    • 2014
  • Aim: To investigate signaling pathways for reversal of EGF-mediated multi-drug resistance (MDR) in hepatocellular carcinoma (HCC) models. Materials and Methods: HCC MDR cell strain HepG2/adriamycin (ADM) and SMMC7721/ADM models were established using a method of exposure to medium with ADM between low and high concentration with gradually increasing concentration. Drug sensitivity and reversal of multi-drug resistance by EGF were determined and the cell cycle distribution and apoptosis were analyzed by flow cytometry. Phosphorylation of ERK1, ERK2, ERK5 and expression of Bim were detected by Western blotting. Results: The results showed that HepG2/ADM and SMMC7721/ADM cells were resistant not only to ADM, but also to multiple anticancer drugs. When used alone, EGF had no anti-tumor activity in HepG2/ADM and SMMC7721/ADM cells in vitro, while it increased the cytotoxicity of ADM. EGF induced cell apoptosis and G0/G1 phase cell cycle arrest in HepG2/ADM And SMMC7721/ADM cells, while enhancing activity of p-ERKs and up-regulated expression of BimEL. Conclusions: EGF might enhance the chemosensitivity of HepG2/ADM and SMMC7721/ADM cells via up-regulating p-ERKs and BimEL protein.

Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls

  • Mansouri, Iman;Arabzadeh, Ali;Farzampour, Alireza;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2020
  • Steel plate shear walls are recently used as efficient seismic lateral resisting systems. These lateral resistant structures are implemented to provide more strength, stiffness and ductility in limited space areas. In this study, the seismic behavior of the multi-story steel frames with steel plate shear walls are investigated for buildings with 4, 8, 12 and 16 stories using verified computational modeling platforms. Different number of steel moment bays with distinctive lengths are investigated to effectively determine the deflection amplification factor for low-rise and high-rise structures. Results showed that the dissipated energy in moment frames with steel plates are significantly related to the inside panel. It is shown that more than 50% of the dissipated energy under various ground motions is dissipated by the panel itself, and increasing the steel plate length leads to higher energy dissipation capability. The deflection amplification factor is studied in details for various verified parametric cases, and it is concluded that for a typical multi-story moment frame with steel plate shear walls, the amplification factor is 4.93 which is less than the recommended conservative values in the design codes. It is shown that the deflection amplification factor decreases if the height of the building increases, for which the frames with more than six stories would have less recommended deflection amplification factor. In addition, increasing the number of bays or decreasing the steel plate shear wall length leads to a reduction of the deflection amplification factor.