• Title/Summary/Keyword: multi-radio multi-channel

Search Result 230, Processing Time 0.069 seconds

Improving Efficiency of Timeslot Assignment for Non-realtime Data in a DVB-RCS Return Link: Modeling and Algorithm

  • Lee, Ki-Dong;Cho, Yong-Hoon;Lee, Ho-Jin;Oh, Deock-Gil
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.211-218
    • /
    • 2003
  • This paper presents a dynamic resource allocation algorithm with multi-frequency time-division multiple access for the return link of interactive satellite multimedia networks such as digital video broadcasting return channel via satellite systems. The proposed timeslot assignment algorithm, called the very efficient dynamic timeslot assignment (VEDTA) algorithm, gives an optimal assignment plan within a very short period. The optimality and computational efficiency of this algorithm demonstrate that it will be useful in field applications.

  • PDF

Adaptive Multi-Rate(AMR) Speech Coding Algorithm (Adaptive Multi-Rate(AMR) 음성부호화 알고리즘)

  • 서정욱;배건성
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.92-97
    • /
    • 2000
  • An AMR(Adaptive Multi-Rate) speech coding algorithm has been adopted as a standard speech codec for IMT-2000. It is based on the algebraic CELP, and consists of eight speech coding modes having the bit rate from 4.75 kbit/s to 12.2 kbit/s. It also contains the VAD(Voice Activity Detector), SCR (Source Controlled Rate) operation, and error concealment scheme for robustness in a radio channel. The bit rate of AMR is changed on a frame basis depending on the channel condition. In this paper, we introduced AMR speech coding algorithm and performed the real-time implementation using TMS320C6201, i.e., a Texas Instrument's fixed-point DSP. With the ANSI C source code released from ETSI and 3GPP, we convert and optimize the program to make it run in real time using the C compiler and assembly language. It is verified that the decoded result of the implemented speech codec on the DSP is identical with the PC simulation result using ANSI C code for test sequences. Also, actual sound input/output test using microphone and speaker demonstrates its proper real-time operation without distortions or delays.

  • PDF

Effects of Impulsive Noise on the Performance of Uniform Distributed Multi-hop Wireless Sensor Networks

  • Rob, Jae-Sung
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.300-304
    • /
    • 2007
  • Wireless sensor networks represent a new and exciting communication paradigm which could have multiple applications in future wireless communication. Therefore, performance analysis of such a wireless sensor network paradigm is needed in complex wireless channel. Wireless networks could be an important means of providing ubiquitous communication in the future. In this paper, the BER performance of uniform distributed wireless sensor networks is evaluated in non-Gaussian noise channel. Using an analytical approach, the impact of Av. BER performance relating the coherent BPSK system at the end of a multi-hop route versus the spatial density of sensor nodes and impulsive noise parameters A and $\Gamma$ is evaluated.

SLNR-based User Scheduling in Multi-cell networks: from Multi-antenna to Large-Scale Antenna System

  • Li, Yanchun;Zhu, Guangxi;Chen, Hua;Jo, Minho;Liu, Yingzhuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.945-964
    • /
    • 2014
  • In this paper, we investigate the performance of Signal to Leakage and Noise Radio (SLNR) based user scheduling in uplink of multi-cell with large-scale antenna system. Large antenna array is desired to improve the performance in future system by providing better beamforming capability. However, some studies have found that the signal channel is 'hardened' (becomes invariant) when the antenna number goes extremely large, which implies that the signal channel aware user scheduling may have no gain at all. With the mathematic tool of order statistics, we analyzed the signal and interference terms of SLNR in a homogeneous multicell network. The derived distribution function of signal and interference shows that the leakage channel's variance is much more influential than the signal channel's variance in large-scale antenna regime. So even though the signal channel is hardened, the SLNR-based scheduling can achieve remarkable multiuser diversity (MUD) gain due to the fluctuation of the uplink leakage channel. By providing the final SINR distribution, we verify that the SLNR-based scheduling can leverage MUD in a better way than the signal channel based scheduling. The Monte Carlo simulations show that the throughput gain of SLNR-based scheduling over signal channel based scheduling is significant.

An Efficient Multi-Channel MAC Protocol for Cognitive Ad-hoc Networks with Idle Nodes Assistance (무선 인지 애드 혹 네트워크를 위한 휴지 노드를 활용하는 효율적인 다중 채널 MAC 프로토콜)

  • Gautam, Dinesh;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.39-45
    • /
    • 2011
  • In this paper, we propose an efficient multichannel MAC protocol with idle nodes assistance to avoid the multi-channel hidden terminal problem in cognitive radio ad hoc network and further to improve the performance of the network. The proposed MAC protocol can be applied to the cognitive radio adhoc network where every node is equipped with the single transceiver and one common control channel exists for control message negotiation. In the proposed protocol, the idle nodes available in the neighbour of communication nodes are utilized because the idle nodes have the information about the channels being utilized in their transmission range. Whenever the nodes are negotiating for the channel, idle nodes can help the transmitting and receiving nodes to select the free data channel for data transfer. With the proposed scheme, we can minimize the hidden terminal problem and decrease the collision between the secondary users when selecting the channel for data transfer. As a result, the performance of the network is increased.

Implementation of Co-Channel Radio Relay System and Its Performance Evaluation with Synchronous Digital Hierarchy (동기식 디지틀 계위의 동일채널 무선 전송장치구현 및 성능분석)

  • 서경환
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.10-22
    • /
    • 1998
  • In this paper, as a way of improving the availability and spectral efficiency of radio relay system, a co-channel radio relay system based upon the synchronous digital hierarchy is developed and its performance measured by 64-QAM with a never-seen multi-purpose ASIC chip is illustrated. This system provides a couple of transmission capacity compared with alternative channel arrangement. By adopting a powerful complex 13-tap adaptive time domain equalizer and cross-pol interference canceller, improvement of more than 1.5 ~ 2.0 dB in signature is obtained in comparison to 9 or 11-tap adaptive time domain equalizer, and about 22.5 dB in improvement factor of cross-pol interference canceller is achieved at C/N of 24.5 dB. In addition, digital filter makes it possible to optimize the occupied bandwidth by selecting an appropriate roll-off factor externally. It is expected that co-channel radio relay system with the powerful multi-purpose ASIC chip plays a key role in creating a value-added product, reliability, and reducing the outage time.

  • PDF

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

Generalized Analysis on the Combined Effect of SPM and Fiber Chromatic Dispersion on Subcarrier Multiplexed Optical Transmission Systems for RoF Applications

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • We investigate theoretically the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) on multi-channel subcarrier multiplexed (SCM) optical transmission systems in terms of the detected RF carrier power and SPM-induced power gain after transmission over single-mode fiber (SMF) links. According to the calculated power gain due to the SPM effect at the transmission distance of P3dB using the detected radio-frequency (RF) carrier power after photo-detection, the power gain is significantly degraded with large optical modulation index (OMI), small SCM channel spacing, and large fiber launching power because of the increased interaction between subcarrier channels. The nonlinear phase shift due to linear and nonlinear fiber characteristics is investigated to explain these results in detail. The numerical simulation results show that the OMI per SCM channel has to be smaller than 10 % for the fiber launching power of 10 dBm to guarantee prevention of SPM-induced power gain degradation below 0.5 dB for the SCM system with the channel spacing of 100 MHz. This result is expected to be utilized for the optical transmission systems using the SCM technology in future radio-over-fiber (RoF) networks.

Minimum Channel Assignment for Multi-Radio Multi-Channel Wireless Mesh Networks (멀티 라디오 멀티 채널 무선 메쉬 네트워크를 위한 최소 간섭 채널 할당)

  • Cha, Si-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.287-289
    • /
    • 2009
  • 무선 메쉬 네트워크(WMN, Wireless Mesh Network)에서의 전체적인 성능은 채널의 간섭을 최소화함으로써 개선될 수 있다. 본 논문은 3개의 멀티 채널을 지원하는 IEEE 802.11b/g 기반 WMNs를 위해 제안된 클러스터 기반 채널 할당 기법인 CB-CA(Cluster-Based Channel Assignment)[3] 알고리즘을 멀티 라디오 멀티 채널 WMN 환경에 적합하게 개선시키고자 한다. CB-CA 알고리즘에서는 메쉬 라우터들중에 선택된 클러스터 헤드(CH, Cluster Head) 노드들과 클러스터들 간의 에지 게이트웨이(EG, Edge Gateway) 노드들 간에는 모두 동일 채널을 사용함으로써 채널 스캐닝과 채널 스위칭을 수행하지 않는다. 그러나 이러한 모든 CH들과 EG들 간의 동일 채널의 사용은 많은 노드들에서 채널 간섭을 발생 시키는 문제점이 발생한다. 본 논문에서는 이를 해결하기 위하여 송수신 인터페이스를 구분하고 각 인터페이스에서의 채널을 랜덤하게 설정하고 이를 통신 범위 내에 인접한 이웃 클러스터들에게 알림으로써 서로 간섭이 발생하지 않는 채널들이 설정되도록 한다. 이로써 각 클러스터 간의 채널 간섭을 최소화 할 수 있음과 동시에 다중 인터페이스와 다중 채널을 모두 활용할 수 있어서 QoS를 향상시킬 수있다.

  • PDF