• Title/Summary/Keyword: multi-radio multi-channel

Search Result 230, Processing Time 0.031 seconds

The Performance Analysis of Equalizer for Next Generation W-LAN with OFDM System (OFDM 방식의 차세대 무선 LAN 환경에서 등화기의 성능 분석)

  • Han, Kyung-Su;Youn, Hee-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.1
    • /
    • pp.44-51
    • /
    • 2002
  • This paper describes the performance evaluation and analysis of an Orthogonal Frequency-Division Multiplexing (OFDM) system having the least Inter Symbol Interference (ISI) in a multi-path fading channel environment. Wireless Local Area Network (W-LAN) in accordance with IEEE 802.11a and IEEE 802.11b provides high-speed transmission to universities, businesses and other various places. In addition, service providers can offer a public W-LAN service on restricted areas such as a subway. The proliferation of W-LAN has led to greater W-LAN service demands, but problems are also on the rise in offering a good W-LAN service. In particular, urban areas with high radio wave interference and many buildings are vulnerable to deteriorated QoS including disconnected data and errors. For example, when high-speed data is transmitted in such areas, the relatively high frequency generates ISI between Access Points (AP) and Mobile Terminals (such as a notebook computer), leading to a frequency selective fading channel environment. Consequently, it is difficult to expect a goodW-LAN service. The simulation proves that the OFDM system enables W-LAN to implement QoS in high-speed data transmission in a multi-path fading channel environment. The enhanced OFDM performance with 52 sub-carriers is verified via data modulation methods such as BPSK, QPSK and 16QAM based on IEEE 802.11a and punched convolutional codes with code rate of 1/2 and 3/4 and constraint length of 7. Especially, the simulation finds that the OFDM system has better performance and there is no data disconnection even in a mobile environment by applying a single tap equalizer and a decision feedback equalizer to a mobile channel environment with heavy fading influence. Given the above result, the OFDM system is an ideal solution to guarantee QoS of the W-LAN service in a high-speed mobile environment.

  • PDF

Design of Ultra Wide Band Radar Transceiver for Foliage Penetration (수풀투과를 위한 초 광대역 레이더의 송수신기 설계)

  • Park, Gyu-Churl;Sun, Sun-Gu;Cho, Byung-Lae;Lee, Jung-Soo;Ha, Jong-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • This study is to design the transmitter and receiver of short range UWB(Ultra Wide Band) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. The transmitter needs two transmitters to improve the azimuth resolution. Multi-channel receivers are required to synthesize radar image. Transmitter consists of high power amplifier, channel selection switch, and waveform generator. Receiver is composed of sixteen channel receivers, receiver channel converter, and frequency down converter, Before manufacturing it, the proposed architecture of transceiver is proved by modeling and simulation using several parameters. Then, it was manufactured by using industrial RF(Radio Frequency) components and all other measured parameters in the specification were satisfied as well.

A Frequency Allocation Method for Cognitive Radio Using the Fuzzy Set Theory (퍼지 집합 이론을 활용한 무선인지 주파수 할당 알고리즘)

  • Lee, Moon-Ho;Lee, Jong-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.745-750
    • /
    • 2008
  • In a cognitive radio based system, quality of service (QoS) for the secondary user must be maintained as much as possible even while that of the primary user is protected all he time. In particular, switching wireless links for the secondary user during the transmission of multimedia data causes delay and information loss, and QoS degradations occur inevitably. The efficient resource management scheme is necessary to support the seamless multimedia service to the secondary user. This paper proposes a novel frequency selection method based on Multi-Criteria Decision Making (MCDM), in which uncertain parameters such as received signal strength, cell load, data rate, and available bandwidth are considered during the decision process for the frequency selection with the fuzzy set theory. Through simulation, we show that our proposed frequency selection method provides a better performance than the conventional methods which consider the received signal strength only.

Implementation and Performance Analysis of Multi-GNSS Signal Collection System using Single USRP

  • Park, Kwi Woo;Choi, Yun Sub;Lee, Min Joon;Lee, Sang Jeong;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • In this paper, a system that can collect GPS L1 C/A, GLONASS G1, and BDS B1I signals with single front-end receiver was implemented using a universal software radio peripheral (USRP) and its performance was verified. To acquire the global navigation satellite system signals, hardware was configured using USRP, antenna, external low-noise amplifier, and external oscillator. In addition, a value of optimum local oscillator frequency was selected to sample signals from three systems with L1-band with a low sampling rate as much as possible. The comparison result of C/N0 between the signal collection system using the proposed method and commercial receiver using double front-end showed that the proposed system had 0.7 ~ 0.8dB higher than that of commercial receiver for GPS L1 C/A signals and 1 ~ 2 dB lower than that of commercial receiver for GLONASS G1 and BDS B1I. Through the above results, it was verified that signals collected using the three systems with a single USRP had no significant error with that of commercial receiver. In the future, it is expected that the proposed system will be combined with software-defined radio (SDR) and advanced to a receiver that has a re-configuration channel.

QoS and Multi-Class Service Provisioning with Distributed Call Admission Control in Wireless ATM Networks (무선 ATM망에서 QoS와 다중 서비스를 지원하는 분산된 호 수락 제어 알고리즘과 성능 분석)

  • Jeong, Da-Ip;Jo, Yeong-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2000
  • In wireless environment, due to the limited capacity of radio channels it is not easy to guarantee QoS provisioning to mobile users. Therefore, one of the key problems to support broadband multimedia multi-services in wireless ATM networks is to study an effective call admission control(CAC). The purpose of this paper is to propose a distributed CAC scheme that guarantees multi QoS and multi-class service. Control parameters of the proposed scheme are QoS threshold and channel overload probability. With these parameter control, we show that the scheme can guarantee the requested QoS to both new and handover calls. In the scheme, channels are allocated dynamically, and QoS measurements are made in a distributed manner. We show that by providing variable data rate to calls it can effectively prohibit the QoS degradation even if there are severe fluctuations of network traffic. We compare the proposed CAC scheme to the well-known schemes such as guard band call admission control scheme. Through numerical examples and simulations, the proposed scheme is shown to improve the performance by lowering the probability of handover call dropping

  • PDF

Improvement of Performance in the DS-CDMA / DPSK Cellular Mobile Communication System using CCI Canceller and MRC Diversity (DS-CDMA/DPSK 셀룰라 이동통신 시스템에서 간섭 제거기와 최대비 합성 다이버시티에 의한 성능의 개선)

  • 우병훈;오창헌;조성준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.1
    • /
    • pp.22-30
    • /
    • 1994
  • The error probability of the DS-CDMA / DPSK cellular mobile communication system with CCI canceller and MRC diversity reception technique has been analyzed in the cellular radio channel which is characterized by AWGN, Multi-User Interference(MUI) and m-distribution fading. System capacity i. e., number of user per cell has been derived and the evaluated results are shown in figures as a function of PN code sequence length, fading index, BER, number of diversity branches and $E_b/N_o$, Here, the voice activity factor is assumed to be 3/8, the number of sectors in a cell 3 and Multi-User Iner- ference is modeled as Gaussian process.

  • PDF

An OFDMA-Based Next-Generation Wireless Downlink System Design with Hybrid Multiple Access and Frequency Grouping Techniques

  • Lee Won-Ick;Lee Byeong Gi;Lee Kwang Bok;Bahk Saewoong
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.115-125
    • /
    • 2005
  • This paper discusses how to effectively design a next-generation wireless communication system that can possibly provide very high data-rate transmissions and versatile quality services. In order to accommodate the sophisticated user requirements and diversified user environments of the next-generation systems, it should be designed to take an efficient and flexible structure for multiple access and resource allocation. In addition, the design should be optimized for cost-effective usage of resources and for efficient operation in a multi-cell environment. As orthogonal frequency division multiple access (OFDMA) has turned out in recent researches to be one of the most promising multiple access techniques that can possibly meet all those requirements through efficient radio spectrum utilization, we take OFDMA as the basic framework in the next-generation wireless communications system design. So, in this paper, we focus on introducing an OFDMA-based downlink system design that employs the techniques of hybrid multiple access (HMA) and frequency group (FG) in conjunction with intra-frequency group averaging (IFGA). The HMA technique combines various multiple access schemes on the basis of OFDMA system, adopting the multiple access scheme that best fits to the given user condition in terms of mobility, service, and environment. The FG concept and IFGA technique help to reduce the feedback overhead of OFDMA system and the other-cell interference (OCI) problem by grouping the sub-carriers based on coherence band-widths and by harmonizing the channel condition and OCI of the grouped sub-carriers.

Hybrid ABS based Inter-Cell Scheduling Algorithms for QoS Improvement of Heterogeneous Networks (이기종 네트워크의 QoS 향상을 위한 Hybrid ABS기반 셀 간 스케줄링 알고리즘)

  • Kim, Myung-Dong;Seong, Hyeon-Kyeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, for the improvement of quality of service(QoS) performance of heterogeneous networks, multi-cell scheduling is proposed. In order to implement the proposed algorithm, for the recognition of the impact on the throughput performance of users, macro-pico-cells that form distributed architecture were proposed. In operating heterogeneous networks, considering the centralized structure, a macro-RRH(Remote Radio Head) deployment scenario was proposed. For interference mitigation of the proposed system, by applying the optional sub-frame, through CQI(Channel Quality Indicator) measurement for each sub-frame period, constraint conditions were measured according to system situations. For the simplification, the pattern of the same ABS muting was assumed. In the above two multi-cell environments, the algorithm of high-speed load balancing maintenance was proposed.

Efficient System Level Simulation Method for MIMO-OFDM System (MIMO-OFDM 시스템을 위한 효율적인 시스템 레벨 시뮬레이션 기법)

  • Kim, Min-Hoon;Ko, Young-Chai;Jeon, Tae-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.77-85
    • /
    • 2009
  • This paper proposes an efficient system level simulation method for MIMO-OFDM based system in the multi-cell environment. The proposed method analyzes effects of the cell structure, radio channel characteristics and user mobility. The user mobility effect on the system level performance is considered in both channel gain and distance. The receiver SINR calculation procedure is presented in the system which adopts MIMO-OFDM scheme under various system environments. This method can be flexibly extensible to various system environments and provides computationally efficient system level simulation technique which utilizes link level performance analysis. Extensive computer simulations results are presented to obtain the system performance in the various mobile cellular channels using the proposed method. Also this results are analyzed based on the packet error rate for different distances between the base station located in the center of the cell and the mobile user.

I/Q channel regeneration in 6-port junction based direct receiver (직접 변환 수신기를 위한 Six Port에서의 I와 Q채널의 생성)

  • Kim Seayoung;Kim Nak-Myeong;Kim Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.6 s.324
    • /
    • pp.1-7
    • /
    • 2004
  • The development of direct receiver techniques is expected to be a solution for future wideband or multi-band wireless systems based on software defined radio. In this Paper, we study the regeneration of I and Q signals for the SDR based direct conversion receiver, so that we can handle a wide bandwidth and maintain maximal flexibility in system utilization. After modeling the basic system considering the real wireless communication environment, and studying the impact of imperfect phase imbalance on the performance of a direct conversion receiver, we propose a suboptimal I and Q signal regeneration algorithm for the system. The proposed algerian regenerates I and Q signals using a real time early-late compensator which effectively estimates phase imbalances and gives feedback in a directreceiver. The proposed algorithm is shown to mitigate the impact of AWGN and improves performance especially at low SNR channel condition. According to the computer simulation, the BER performance of the proposed system is at least about 4 dB better than conventional systems under $45{\~}55$ degrees random phase errors.