• Title/Summary/Keyword: multi-processing module

Search Result 150, Processing Time 0.023 seconds

Development of 32-Channel Image Acquisition System for Thickness Measurement of Retina (망막 두께 측정을 위한 32채널 영상획득장치 개발)

  • 양근호;유병국
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.110-113
    • /
    • 2003
  • In this paper, the multi-channel high speed data acquisition system is implemented. This high speed signal processing system for 3-D image display is applicable to the manipulation of a medical image processing, multimedia data and various fields of digital image processing. In order to convert the analog signal into digital one, A/D conversion circuit is designed. PCI interface method is designed and implemented, which is capable of transmission a large amount of data to computer. In order to, especially, channel extendibility of images acquisition, bus communication method is selected. By using this bus method, we can interface each module effectively. In this paper, 32-channel A/D conversion and PCI interface system for 3-dimensional and real-time display of the retina image is developed. The 32-channel image acquisition system and high speed data transmission system developed in this paper is applicable to not only medical image processing as 3-D representation of retina image but also various fields of industrial image processing in which the multi-point realtime image acquisition system is needed.

  • PDF

RAVIP: Real-Time AI Vision Platform for Heterogeneous Multi-Channel Video Stream

  • Lee, Jeonghun;Hwang, Kwang-il
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.227-241
    • /
    • 2021
  • Object detection techniques based on deep learning such as YOLO have high detection performance and precision in a single channel video stream. In order to expand to multiple channel object detection in real-time, however, high-performance hardware is required. In this paper, we propose a novel back-end server framework, a real-time AI vision platform (RAVIP), which can extend the object detection function from single channel to simultaneous multi-channels, which can work well even in low-end server hardware. RAVIP assembles appropriate component modules from the RODEM (real-time object detection module) Base to create per-channel instances for each channel, enabling efficient parallelization of object detection instances on limited hardware resources through continuous monitoring with respect to resource utilization. Through practical experiments, RAVIP shows that it is possible to optimize CPU, GPU, and memory utilization while performing object detection service in a multi-channel situation. In addition, it has been proven that RAVIP can provide object detection services with 25 FPS for all 16 channels at the same time.

System Design for High-speed Visual Inspection of Electronic Components (전자부품의 고속 외관검사를 위한 시스템 설계)

  • Yoo, Seungryeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.39-44
    • /
    • 2012
  • Electronics in modern lives have become more miniaturized and precise. Multi Layered Ceramic Capacitor (MLCC) occupies 50% of electronic components consisting of electronics. This high volume of the production needs high speed and more precise machine performances. The dominate parts of the production equipments are the module transporting components and the visual inspection module. Most visual inspection has been off-line because of the image processing time. In this paper, a new image processing method is proposed to reduce thousands of matrix calculation for image processing and realize on-line high speed inspection.

Aircraft Recognition from Remote Sensing Images Based on Machine Vision

  • Chen, Lu;Zhou, Liming;Liu, Jinming
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.795-808
    • /
    • 2020
  • Due to the poor evaluation indexes such as detection accuracy and recall rate when Yolov3 network detects aircraft in remote sensing images, in this paper, we propose a remote sensing image aircraft detection method based on machine vision. In order to improve the target detection effect, the Inception module was introduced into the Yolov3 network structure, and then the data set was cluster analyzed using the k-means algorithm. In order to obtain the best aircraft detection model, on the basis of our proposed method, we adjusted the network parameters in the pre-training model and improved the resolution of the input image. Finally, our method adopted multi-scale training model. In this paper, we used remote sensing aircraft dataset of RSOD-Dataset to do experiments, and finally proved that our method improved some evaluation indicators. The experiment of this paper proves that our method also has good detection and recognition ability in other ground objects.

High-Perlormance VLSI Architecture of HEVC CABAC Decoder by Multi-Parallel Algorithm (병 렬 알고리즘에 의한 H.265/HEVC CABAC 디코더의 고성능 구조)

  • Kim, Gi-Yeong;Bae, Jong-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.934-937
    • /
    • 2015
  • 본 논문은 비디오 디코더의 병목현장을 해결하고 대량의 데이터를 처리할 수 있는 다중병렬처리방식의 HEVC CABAC 디코더를 소개한다. CABAC 디코더를 병렬화한 하드웨어 VLSI구조를 설계하여 크기 대비 높은 처리량이 나오는지를 설계 및 분석결과를 통해 연구결과를 도출하는 게 본 논문의 목적이다. CABAC 디코더 내부 module(산술 디코더, 문맥 모델러, 역이진화기) 1개에서 4개까지의 병렬화를 분석한 결과 4개의 병렬화를 했을 때가 크기 대비 처리량이 가장 높다는 것을 알 수 있었다. 또한 내부 module 4개를 병렬화한 CABAC 디코더 4개를 병렬화하여 slice 단위로 나눠진 프레임 1개를 한 번에 처리하는 방식을 채택하였다. 본 논문에서는 각 CABAC 디코더의 내부 module 4개를 병렬화하고, 병렬화한 CABAC 디코더 4개를 다시 병렬화하는 하드웨어 구조를 사용한다.

Implementation of CWP MRT Data Processing Module for Efficient Correlating Flight Plan (효율적인 비행계획 연관을 위한 CWP MRT 데이터 처리 모듈 구현)

  • Kim, Kanghee;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.268-277
    • /
    • 2014
  • It is very important to correlate flight plan for safe and prompt ATC(air traffic control) operation. In this paper, we design CWP(controller working position) MRT(multi radar tracking) processing module to achieve improvement of overall ATC automation system's performance by minimizing network traffic overload when correlating MRT with flight plan. This implemented module can guarantee efficiency and safety of ATC automation system by applying distributed correlated manner, and reduce network usage by using encoded flight plan correlated MRT data format. We found that this module has 8.54~12.11% lower network usage and 8.37~11.27% higher network traffic fairness than the module using standalone manner.

Differential Power Processing System for the Capacitor Voltage Balancing of Cost-effective Photovoltaic Multi-level Inverters

  • Jeon, Young-Tae;Kim, Kyoung-Tak;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1037-1047
    • /
    • 2017
  • The Differential Power Processing (DPP) converter is a promising multi-module photovoltaic inverter architecture recently proposed for photovoltaic systems. In this paper, a DPP converter architecture, in which each PV-panel has its own DPP converter in shunt, performs distributed maximum power point tracking (DMPPT) control. It maintains a high energy conversion efficiency, even under partial shading conditions. The system architecture only deals with the power differences among the PV panels, which reduces the power capacity of the converters. Therefore, the DPP systems can easily overcome the conventional disadvantages of PCS such as centralized, string, and module integrated converter (MIC) topologies. Among the various types of the DPP systems, the feed-forward method has been selected for both its voltage balancing and power transfer to a modified H-bridge inverter that needs charge balancing of the input capacitors. The modified H-bridge multi-level inverter had some advantages such as a low part count and cost competitiveness when compared to conventional multi-level inverters. Therefore, it is frequently used in photovoltaic (PV) power conditioning system (PCS). However, its simplified switching network draws input current asymmetrically. Therefore, input capacitors in series suffer from a problem due to a charge imbalance. This paper validates the operating principle and feasibility of the proposed topology through the simulation and experimental results. They show that the input-capacitor voltages maintain the voltage balance with the PV MPPT control operating with a 140-W hardware prototype.

Implementation of IQ/IDCT in H.264/AVC Decoder Using Mobile Multi-Core GPGPU (모바일 멀티 코어 GP-GPU를 이용한 H.264/AVC 디코더 구현)

  • Kim, Dong-Han;Lee, Kwang-Yeob;Jeong, Jun-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.321-324
    • /
    • 2010
  • There have been lots of researches on a multi-core processor. The enhancement has been performed through parallelization method. Multi-core architecture in the mobile environment has emerged. But, there is a limit to a mobile CPU's performance. GP-GPU(General-Purpose computing on Graphics Processing Units) can improve performance without adding other dedicated hardware. This paper presents the implementation of Inverse Quantization, Inverse DCT and Color Space Conversion module in H.264/AVC decoder using Multi-Core GP-GPU for a mobile environments. The proposed architecture improves approximately 50% of performance when it use all the features.

  • PDF

Development of Multi-Band Multi-Mode SDR Radar Platform (다중 대역 다중 모드 SDR 레이다 플랫폼 개발)

  • Kwag, Young-Kil;Woo, In-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.949-958
    • /
    • 2016
  • This paper presents the new development result of the multi-band, the multi-mode SDR(Software Defined Radar) platform. The SDR hardware platform is implemented by using the reconfigurable multi-band RF transceiver and antenna modules of S, X, and K-bands, and a programmable signal processing module. The SDR software platform is implemented by using the multi-mode waveform generation of CW, Pulse, FMCW, and LFM Chirp as well as the adaptable algorithm library of signal processing and open API software modules. Through the integrated test of the SDR platform, the operational performance was verified in real-time. Also, through the field-application test, the ground target and air-vehicle drone target were successfully detected and their test results were presented.

Real Scene Text Image Super-Resolution Based on Multi-Scale and Attention Fusion

  • Xinhua Lu;Haihai Wei;Li Ma;Qingji Xue;Yonghui Fu
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Plenty of works have indicated that single image super-resolution (SISR) models relying on synthetic datasets are difficult to be applied to real scene text image super-resolution (STISR) for its more complex degradation. The up-to-date dataset for realistic STISR is called TextZoom, while the current methods trained on this dataset have not considered the effect of multi-scale features of text images. In this paper, a multi-scale and attention fusion model for realistic STISR is proposed. The multi-scale learning mechanism is introduced to acquire sophisticated feature representations of text images; The spatial and channel attentions are introduced to capture the local information and inter-channel interaction information of text images; At last, this paper designs a multi-scale residual attention module by skillfully fusing multi-scale learning and attention mechanisms. The experiments on TextZoom demonstrate that the model proposed increases scene text recognition's (ASTER) average recognition accuracy by 1.2% compared to text super-resolution network.