• Title/Summary/Keyword: multi-piers

Search Result 43, Processing Time 0.025 seconds

Seismic Performance of RC Multi-Column piers with Reinforcement Details (RC 다주교각의 철근상세에 따른 내진성능 평가)

  • 김재관;김익현;김정한;조대연
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.873-878
    • /
    • 2002
  • This study is performed to investigate the behavior of multi-column piers and to evaluate the seismic performance. In this study, 3 types of scale model piers with 2-column are designed and tested by quasi-static load in both longitudinal and transverse directions. Each type of model consisting of 2 specimens has different reinforcement details in the lap splice of longitudinal bars and amount of transverse reinforcements. This paper reports that relatively large amount of ductility can be achieved by providing sufficient lap-splice length and transverse reinforcements with end hook even if longitudinal bars are lap spliced in the base of pier. But because multi-column piers have small longitudinal stiffness, careful consideration is needed in case of multi-span continuous bridges.

  • PDF

Measurement of the Equivalent Resistance Coefficient for Multi-piers in Open Channel (개수로 다열기둥에 대한 상당저항계수의 측정)

  • Kwon, Kab Keun;Choi, Junwoo;Yoon, Sung Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.635-642
    • /
    • 2008
  • The influence of unsubmerged resistance bodies in a channel turbulence flow on energy loss was investigated by hydraulic experiments. Square-shaped multi-piers were used for unsubmerged structure or rigid vegetation in an open channel. In experimental channel flows multi-piers were arranged in double or single row along the channel direction, and mean-concept uniform elevations were attained and measured with a set of discharges and channel slopes. Applying the experimental results to the Manning equation, the equivalent resistance coefficient n, which implicates flow resistance and energy loss due to bottom friction as well as drag, was evaluated with varying the interval of piers and the uniform water depth. And the experimentally evaluated n values were compared with the semi-theoretical formula of the equivalent resistance coefficient derived from momentum analysis including a drag interaction coefficient. From the comparisons it was found that the interaction effect of piers on flow resistance was significant for the overall energy losses in a channel flow. The n values decrease when the interval of piers in flow-direction is less than about 2.2 times of the pier width. And it was also found that the n values increase with the 2/3 power of water depth in the theoretical formula, since the drag interaction coefficient was found to be mostly dependent on the interval of piers.

3D Parametric Modeling of RC Piers and Development of Data Generation Module for a Structural Analysis with 3D Model of RC Piers (RC 교각의 3차원 매개변수 모델링 및 비선형 구조해석 입력 데이터 생성 모듈 구축)

  • Son, You-Jin;Shin, Won-Chul;Lee, Sang-Chul;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of KIBIM
    • /
    • v.3 no.3
    • /
    • pp.19-28
    • /
    • 2013
  • In Korea highway bridges, most piers are the type of one-column or multi-column ones. So, in this study, under an environment applying BIM so fast, to activate researches on two-column piers subjected to bidirectional seismic loading, a 3D parametric modeling method was selected when the model of two-column piers and one-column piers were formed. Also, interface module between input data in structural analysis and 3D model of RC pier was developed. The module can create the input data for non-linear structural analysis like material, geometric properties and additional coefficients.

An Experimental Study on the Behavior of Reinforced Concrete Multi-Column Piers with Different Longitudinal and Transverse Reinforcement Details (주철근 겹침이음 및 횡철근 상세에 따른 철근콘크리트 다주교각의 거동특성에 관한 실험적 연구)

  • 김재관;김익현;김정한;조대연
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.211-219
    • /
    • 2002
  • This study is performed to investigate the behavior of multi-column piers and to evaluate the seismic performance. In this study, 3 types of scale model piers with 2-column are designed and tested by quasi-static load in both longitudinal and transverse directions. Each type of model consisting of 2 specimens has different reinforcement details in the lap splice of longitudinal bars and amount of transverse reinforcements. This paper reports that the ductility of the model in transverse direction is rather higher than in longitudinal direction because of formation of several plastic hinges and that the ultimate displacement and the energy absorbtion capacity are enhanced by using continuous longitudinal bars instead of lap-splice ones. And it is confirmed that relatively large amount of ductility can be achieved by providing sufficient lap-splice length and transverse reinforcements with end hook even if longitudinal bars are lap spliced in the base of pier.

  • PDF

Modeling the cumulative residual deformation of high-speed railway bridge pier subjected to multiple earthquakes

  • Gou, Hongye;Leng, Dan;Yang, Longcheng;Jia, Hongyu
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.317-327
    • /
    • 2019
  • High-speed railway bridge piers in seismically active area may be subjected to multiple earthquakes and then produce cumulative residual deformation. To study the cumulative residual deformation of high-speed railway bridge piers under multiple earthquakes, a nonlinear numerical analytical model with multi-DOF (MDOF) system is presented and validated against two shaking table tests in this paper. Based on the presented model, a simple supported beam bridge pier model of high-speed railway is established and used to investigate the cumulative residual deformation of high-speed railway bridge pier under mainshock-aftershock sequences and swarm type seismic sequences. The results show that the cumulative residual deformation of the bridge pier increases with earthquake number, and the increasing rates are different under different earthquake number. The residual deformation of bridge pier subjected to multiple earthquakes is accumulated and may exceed the limit of code.

3-D Numerical Experiment for Estimation of Equivalent Resistance Coefficient due to Multi-piers : Effect of Transverse Intervals (상당저항계수식 산정을 위한 3차원 수치실험 : 횡방향 이격거리의 영향)

  • Kim, Hyeong-Seok;Choi, Jun-Woo;Ko, Kwang-Oh;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.3
    • /
    • pp.216-223
    • /
    • 2009
  • A transverse drag interaction coefficient of the equivalent resistance coefficient formula for square multi-piers higher than water depth and arranged with equal intervals was studied. From the assumption that the energy loss due to drag interaction according to transverse intervals of resistance bodies is essentially identical to the energy loss due to thick orifice according to porosities, the transverse drag interaction coefficient was derived by employing the orifice's energy loss coefficient. The equivalent resistance coefficient formula including the drag interaction coefficient was compared with the numerical experiments using FLOW-3D, the performance of which was verified by Kim et al.(2008) in the experimental condition with the multi-piers. The comparisons showed good agreement and thus, the equivalent resistance coefficient formula, which does not only consider frictional resistance but also consider the multi-piers' drag resistance varied according to the intervals in longitudinal or transverse direction, was verified.

The influence of different support movements and heights of piers on the dynamic behavior of bridges -Part I: Earthquake acting transversely to the deck

  • Michaltsos, George T.;Raftoyiannis, Ioannis G.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.431-454
    • /
    • 2009
  • This paper presents a simple model for studying the dynamic response of multi-span bridges resting on piers with different heights and subjected to earthquake forces acting transversely to the bridge, but varying spatially along its length. The analysis is carried out using the modal superposition technique, while the solution of the resulting integral-differential equations is obtained via the Laplace transformation. It has been found that the piers' height and the quality of the foundation soil can affect significantly the dynamic behavior of such bridges. Typical examples showing the effectiveness of the method are presented with useful results listed.

Variation of Manning's Coefficient due to Vegetation in Open Channel (개수로내 식생에 의한 Manning계수의 변화)

  • Kwon, Kab-Keun;Kim, Hyung-Seok;Yoon, Sung-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.401-404
    • /
    • 2008
  • The vegetation in the surrounding area of river is a primary factor to increase water level during flood. The influence of vegetation on the river flow in a bank has been investigated by using a hydraulic experiment. For a hydraulic experiment square-shaped piers are used as a model of unsubmerged rigid vegetation in a open channel. For fully developed uniform flows, the water elevation of the experiment was measured as varying the interval of piers and the porosity which presents the fraction of water flowing area in the cross-sectional area. The Manning's roughness coefficient, which implicates energy losses due to the vegetation, was obtained by using the experimental data. As a result, the energy losses were varied when the distance of piers and the porosity of area were changed, and the Manning's coefficient increased nonlinearly when a water elevation increased.

  • PDF

An Analysis of Ship Turnaround Time in the Port of Inchon (선박재항시간에 대한 분석연구 -인천항의 경우-)

  • Baik, In-Hum
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Transportation provides an infrastructure vital to economic growth, and it is also an integral part of production. As a port is regarded as the interface between the maritime transport and domestic transport sectors, it certainly play a key role in any economic development. Ship's delay caused by port congestion has recently has recently attracted attended with the analysis of overall operation in port. In order to analyse complicated port operation which contains large number of variable factors, queueing theory is needed to be adopted, which is applicable to a large scale transportation system in chiding ship's delay in Inchon port in relation to ship's delay problem. The overall findings are as follows ; 1. The stucture of queueing model in this port can be represented as a complex of multi-channel single-phase 2. Ship's arrival and service pattern were Poisson Input Erlangian Service. 3. The suitable formula to calculate the mean delay in this port, namely, $W_q={\frac{{\rho}}{{\lambda}(1-{\rho})}}{\frac{e{\small{N}}({\rho}{\cdot}N)}{D_{N-1}({\rho}{\cdot}N)}}$ Where, ${\lambda}$ : mean arrival rate ${\mu}$ : mean servicing rate N : number of servicing channel ${\rho}$ : utilization rate (l/Nm) $e{\small{N}}$ : the Poisson function $D_{(n-1)}$ : a function of the cumulative Poisson function 4. The utility rate is 95.0 percents in general piers, 75.39 percents in container piers, and watiting time 28.43 hours in general piers, 13.67 hours in container piers, and the length of queue is 6.17 ships in general piers, 0.93 ships in container piers, and the ship turnaround time is 107.03 hours in general piers, 51.93 hours in container piers.

  • PDF

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.