• Title/Summary/Keyword: multi-phase flow

Search Result 299, Processing Time 0.027 seconds

Geomechanical and thermal reservoir simulation during steam flooding

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.505-513
    • /
    • 2018
  • Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.

A Study on the Convective Heat Transfer in Micro Heat Exchanger Embedded in Stacked Multi-Chip Modules (적층형 Multi-Chip Module(MCM) 내부에 삽입된 초소형 열교환기 내에서의 대류 열전달 현상에 대한 연구)

  • Shin, Joong-Han;Kang, Moon-Koo;Lee, Woo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.774-782
    • /
    • 2004
  • This article presents a numerical and experimental investigation for the single-phase forced laminar convective heat transfer through arrays of micro-channels in micro heat exchangers to be used for cooling power-intensive semiconductor packages, especially the stacked multi-chip modules. In the numerical analysis, a parametric study was carried out for the parameters affecting the efficiency of heat transfer in the flow of coolants through parallel rectangular micro-channels. In the experimental study, the cooling performance of the micro heat exchanger was tested on prototypes of stacked multi-chip modules with difference channel dimensions. The simulation results and the experiment data were acceptably accordant within a wide range of design variations, suggesting the numerical procedure as a useful method for designing the cooling mechanism in stacked multi-chip packages and similar electronic applications.

Experimental Study on Variations in Behavior of Green Water and Flow Kinematics on Deck with Various Flare Angles (플레어 각도에 따른 청수현상의 발생과정 및 갑판 위 유동특성 변화에 대한 실험적 연구)

  • Lee, Gang Nam;Jung, Kwang Hyo;Suh, Sung Bu;Kim, Mun Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.77-83
    • /
    • 2018
  • In this study, a series of experiments were performed to investigate the variations in the behavior of green water generation and the flow kinematics of bubbly flow on deck with various flare angles. The experiments were conducted in a 2-D wave flume using a simplified model of a BW Pioneer FPSO operating in the Gulf of Mexico, with a 100-year return period wave condition. The green water phenomena were captured with a high speed CCD camera. The variations in the behavior of the green water generation were investigated with various flare angles, and the horizontal mean velocity profiles of bubbly flow on deck obtained using bubble image velocimetry (BIV) were provided. The differences in flow kinematics of bubbly flow on deck were analyzed with various flare angles.

Analysis of the Flow in Square Cavity Using CIP Method in Non-staggered Grid Arrangement (비엇갈림 격자계에서 CIP법을 이용한 캐비티내의 유동해석)

  • Lee, Jung-Hee;Kang, Joon;Im, Do-Kiun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1821-1826
    • /
    • 2003
  • In this study, we discuss CIP method, which can treat compressible/incompressible problem and multi-phase problem. We can apply this method to the general equations by using CCUP. In this paper, non-staggered grid arrangement and predictor-corrector method are used to enhance later development and the solution accuracy and convergence performance. To validate the numerical algorithm proposed in this paper, the two-dimensional unsteady flow in the driven cavity is simulated. The numerical results of this subject using the present algorithm are compared with other numerical results. As a result, it is prived that the present scheme gives stable and improved solutions, and the results even coarse grid are in good agreement with other result using a fine grid arrangement.

  • PDF

Numerical Analysis of Violent Sloshing Problems by CCUP Method (CCUP 기법을 이용한 2 차원 슬로싱 문제의 수치해석)

  • Yang, Kyung-Kyu;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In the present paper, a numerical method based on the constraint interpolation profile (CIP) method is applied for simulating two-dimensional violent sloshing problems. The free surface boundary value problem is considered as a multiphase problem which includes water and air. A stationary Cartesian grid system is adopted, and an interface capturing method is used to trace the shape of free surface profile. The CIP combined unified procedure (CCUP) scheme is applied for flow solver, and the tangent of hyperbola for interface capturing (THINC) scheme is used for interface capturing. Numerical simulations have been carried out for partially-filled 2D tanks under forced sway and roll motions at various filling depths and frequencies. The computational results are compared with experiments and/or the other numerical results to validate the present numerical method.

A Study on CFD Simulation of Rotational Flow in Stirred Tanks (교반 탱크 내 회전 유동의 CFD 해석 연구)

  • Cho, Chan-Young;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1406-1411
    • /
    • 2009
  • Stirred tanks are widely used in various industries for mixing operations and chemical reactions for single- or multi-phase fluid systems. In this study, a numerical study was conducted to predict the mixing characteristics in a simple stirred tank. The flow in the model stirred tank was calculated utilizing the multiple reference frame (MRF) and the sliding mesh (SM) capabilities of a commercial CFD code (Fluent 6.2). The results of the flow simulation were analyzed in terms of the mixing efficiency, and the applicability of MRF and SM methods was also discussed.

  • PDF

Experimental Operation Analysis of Unified Power Flow Controller with Cascaded H-Bridge Modules (다계 H-브리지 모듈로 구성된 UPFC(Unified Power flow Compensator)의 실험적 동작분석)

  • Baek Seung-Tak;Han Byung-Moon;Choo Jin-Boo;Chang Byung-Hoon;Yoon Jong-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.422-430
    • /
    • 2005
  • This paper describes experimental analysis of UPFC, which is composed of cascaded H-bridge modules and single-phase multi-winding transformers for isolation. The operational characteristic was analyzed through experimental works with a scaled model, and simulation results with PSCAD/EMTDC. The UPFC proposed in this paper can be directly connected to the transmission line without series injection transformers. It has flexibility to expand the operation voltage by increasing the number of H-bridge modules. The analysis results can be utilized to design the actual WFC system applicable for the transmission system.

Research on optimization of traffic flow control at intersections (교차로 교통 흐름 제어 최적화에 관한 연구)

  • Li, Qiutan;Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.15-24
    • /
    • 2022
  • At present, there are few studies on signal control of pedestrian traffic flow and non-motor traffic flow at intersections. Research on the optimization scheme of mixed traffic flow signal control can coordinate and control the overall traffic flow of pedestrians, non-motor vehicles and motor vehicles, which is of great significance to improve the congestion at intersections. For the traffic optimization of intersections, this paper starts from two aspects: channelization optimization and phase design, and reduces the number of conflict points at intersections from spatial and temporal right-of-way allocation respectively. Taking the classical signal timing method as the theoretical basis, and aiming at ensuring the safety and time benefit of traffic travelers, a channelization optimization and signal control scheme of the intersection is proposed. The channelization and phase design methods of intersections with motor vehicles, non-motor vehicles and pedestrians as objects are discussed, and measures to improve the channelization optimization of intersections are proposed. A multi-objective optimization model of intersection signal control was established, and the model was solved based on NSGA-II algorithm.

Analysis of Consistency and Accuracy for the Finite Difference Scheme of a Multi-Region Model Equation (다영역 모델 방정식의 유한차분계가 갖는 일관성과 정화성 분석)

  • 이덕주
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • The multi-region model, to describe preferential flow, is an equation representing solute transport in soils by dividing soil into numerous pore groups and using the hydraulic properties of the soil. As the model partial differential equation (PDE) is solved numerically with finite difference methods. a modified equivalent partial differential equation(MEPDE) of the partial differential equation of the multi-region model is derived to analyze the accuracy and consistency of the solution of the model PDE and the Von Neumann method is used to analyze the stability of the finite difference scheme. The evaluation obtained from the MEPDE indicated that the finite difference scheme was found to be consistent with the model PDE and had the second order accuracy The stability analysis is performed to analyze the model PDE with the amplification ratio and the phase lag using the Von Neumann method. The amplification ratio of the finite difference scheme gave non-dissipative results with various Peclet numbers and yielded the most high values as the Peclet number was one. The phase lag showed that the frequency component of the finite difference scheme lagged the true solution. From the result of the stability analysis for the model PDE, it is analyzed that the model domain should be discretized in the range of Pe < 1.0 and Cr < 2.0 to obtain the more accurate solution.

  • PDF

An Experimental Study on the Atomization Characteristics in an Intermittent Multi-hole Diesel Spray (간헐 다공 디젤 분무의 미립화 특성에 관한 실험적 연구)

  • 이지근;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.27-34
    • /
    • 2001
  • This experimental study is to investigate the intermittent spray characteristics of the multi-hole diesel nozzle with a 2-spring nozzle holder. Without changing the total orifice exit area, its hole number varied from 3($d_n=0.42mm$) to 8($d_n$=0.25mm). Through the use of the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of the diesel spray injected intermittently from the multi-hole nozzle into the still ambient were measured. And the calculations of time-resolved diameters, SMD and AMD were made. The results can be summarized as follows. The spray of the multi-hole nozzle consisted of three parts. These are the leading edge, the central part and the trailing edge. And most of droplets produced at the trailing edge of spray. In the spray flow field, the measuring position which represented the intermittent spray characteristics well was near the nozzle tip. But at the downstream of the spray, its characteristics disappeared, and spray behavior showed a quasi steady state regardless of the time evolution of the spray. The overall mean SMD of the spray increased with the spray development, and showed their maximum value near 1.5ms regardless of hole number.

  • PDF