• Title/Summary/Keyword: multi-objective design optimization

Search Result 478, Processing Time 0.03 seconds

Electrode Shape Optimization of Piezo Sensors Using Genetic Algorithm (유전 알고리듬을 이용한 압전센서의 전극형상 최적화)

  • Lee Ki-Moon;Park Hyun-Chul;Park Chul-Hue
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.698-704
    • /
    • 2006
  • This paper presents an electrode shape design method for the multi-mode sensors that could deteict the selected structural multiple modes. The structure used for this study is an isotropic cantilever beam type with a PVDF (polyvinylidene fluoride) which is bonded onto the structure as a sensor. The shape optimization problem is solved by using Genetic Algorithm (GA) with an appropriate objective function. The performance of analytical optimal shape sensor is compared with that of experimental work. The results show that the, obtained electrode shape sensors have good performance to detect the multiple vibration modes simultaneously.

Evaluation of Surrogate Models for Shape Optimization of Compressor Blades

  • Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.367-370
    • /
    • 2006
  • Performances of multiple surrogate models are evaluated in a turbomachinery blade shape optimization. The basic models, i.e., Response Surface Approximation, Kriging and Radial Basis Neural Network models as well as weighted average models are tested for shape optimization. Global data based errors for each surrogates are used to calculate the weights. These weights are multiplied with the respective surrogates to get the final weighted average models. The design points are selected using three level fractional factorial D-optimal designs. The present approach can help address the multi-objective design on a rational basis with quantifiable cost-benefit analysis.

  • PDF

Multi-Objective Optimization of Rotor-Bearing System with dynamic Constraints Using IGA

  • Choi, Byung-Gun;Yang, Bo-Suk;Jun, Yeo-Dong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.403-410
    • /
    • 1998
  • An immune system has powerful abilities such as memory recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this paper, the combined optimization algorithm (Immune-Genetic Algorithm: IGA) is proposed for multi-optimization problems by introduction the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The new combined algorithm is applied to minimize the total weight of the rotor shaft and the transmitted forces at the bearings in order to demonstrate the merit of the combined algorithm. The inner diameter of the shaft and the bearing stiffness are chosen as the design variables. the results show that the combined algorithm can reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic constraints.

  • PDF

Multi-Objective Pareto Optimization of Parallel Synthesis of Embedded Computer Systems

  • Drabowski, Mieczyslaw
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.304-310
    • /
    • 2021
  • The paper presents problems of optimization of the synthesis of embedded systems, in particular Pareto optimization. The model of such a system for its design for high-level of abstract is based on the classic approach known from the theory of task scheduling, but it is significantly extended, among others, by the characteristics of tasks and resources as well as additional criteria of optimal system in scope structure and operation. The metaheuristic algorithm operating according to this model introduces a new approach to system synthesis, in which parallelism of task scheduling and resources partition is applied. An algorithm based on a genetic approach with simulated annealing and Boltzmann tournaments, avoids local minima and generates optimized solutions. Such a synthesis is based on the implementation of task scheduling, resources identification and partition, allocation of tasks and resources and ultimately on the optimization of the designed system in accordance with the optimization criteria regarding cost of implementation, execution speed of processes and energy consumption by the system during operation. This paper presents examples and results for multi-criteria optimization, based on calculations for specifying non-dominated solutions and indicating a subset of Pareto solutions in the space of all solutions.

Optimal placement of viscoelastic dampers and supporting members under variable critical excitations

  • Fujita, Kohei;Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.43-67
    • /
    • 2010
  • A gradient-based evolutionary optimization methodology is presented for finding the optimal design of both the added dampers and their supporting members to minimize an objective function of a linear multi-storey structure subjected to the critical ground acceleration. The objective function is taken as the sum of the stochastic interstorey drifts. A frequency-dependent viscoelastic damper and the supporting member are treated as a vibration control device. Due to the added stiffness by the supplemental viscoelastic damper, the variable critical excitation needs to be updated simultaneously within the evolutionary phase of the optimal damper placement. Two different models of the entire damper unit are investigated. The first model is a detailed model referred to as "the 3N model" where the relative displacement in each component (i.e., the spring and the dashpot) of the damper unit is defined. The second model is a simpler model referred to as "the N model" where the entire damper unit is converted into an equivalent frequency-dependent Kelvin-Voigt model. Numerical analyses for 3 and 10-storey building models are conducted to investigate the characters of the optimal design using these models and to examine the validity of the proposed technique.

Structural optimization in practice: Potential applications of genetic algorithms

  • Krishnamoorthy, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.151-170
    • /
    • 2001
  • With increasing competition, the engineering industry is in need of optimization of designs that would lead to minimum cost or weight. Recent developments in Genetic Algorithms (GAs) makes it possible to model and obtain optimal solutions in structural design that can be put to use in industry. The main objective of this paper is to illustrate typical applications of GAs to practical design of structural systems such as steel trusses, towers, bridges, reinforced concrete frames, bridge decks, shells and layout planning of buildings. Hence, instead of details of GA process, which can be found in the reported literature, attention is focussed on the description of the various applications and the practical aspects that are considered in Genetic Modeling. The paper highlights scope and future directions for wider applications of GA based methodologies for optimal design in practice.

Optimal Shape Deign of a High Speed Switched Reluctance Motor Vsing Fuzzy Set Theory (퍼지 이론을 이용한 고속 회전용 스위치드 리럭턴스 모터의 형상 최적 설계)

  • Choi, Chang-Hwan;Yoo, Jae-Sun;Park, Kyi-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.659-664
    • /
    • 2000
  • This paper presents a new design method for improving the torque performance of a switched reluctance motor (SRM) for high speed applications. The drawback of the conventional design method based on the overall static average torque maximization is that the torque control performance is degraded at high speed. On the other hand, the proposed method optimizes the torque profile by diving it into several regions so that it is suitable for high speed operation. This multi-objective optimization problem is solved by using a fuzzy optimization algorithm which incorporates a finite element method. The torque performance of the motor for various speed ranges is investigated and the optimally designed motor show a better performance at high speed.

  • PDF

A Study on the Design Method to Optimize an Impeller of Centrifugal Compressor (원심압축기 최적 임펠러 형상설계에 관한 연구)

  • Cho, Soo-Yong;Lee, Young-Duk;Ahn, Kook-Young;Kim, Young-Cheol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • A numerical study was conducted to improve the performance of an impeller of centrifugal compressor. Nine design variables were chosen with constraints. Only meridional contours and blade profile were adjusted. ANN (Artificial Neural Net) was adopted as a main optimization algorithm with PSO (Particle Swarm Optimization) in order to reduce the optimization time. At first, ANN was learned and trained with the design variable sets which were obtained using DOE (Design of Experiment). This ANN was continuously improved its accuracy for each generation of which population was one hundred. New design variable set in each generation was selected using a non-gradient based method of PSO in order to obtain the global optimized result. After $7^{th}$ generation, the prediction difference of efficiency and pressure ratio between ANN and CFD was less than 0.6%. From more than 1,200 design variable sets, a pareto of efficiency versus pressure ratio was obtained and an optimized result was selected based on the multi-objective function. On this optimized impeller, the efficiency and pressure ratio were improved by 1% and 9.3%, respectively.

Magnetic Field Calculation and Multi-objective Optimization of Axial Flux Permanent Magnet Generator with Coreless Stator Windings

  • Zhu, Jun;Li, Shaolong;Song, Dandan;Han, Qiaoli;Li, guanghua
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1586-1595
    • /
    • 2018
  • For the problem that the complexity of 3-D modeling and multi parameter optimization, as well as the uncertainty of the winding factor of axial flux permanent magnet generator with coreless windings. The complex 3-D model was simplified into 2-D analytic model, and an analytical formula for the winding factor that adapting different coreless stator winding is proposed in this paper. The analytical solution for air-gap magnetic fields, no-load back EMF, electromagnetic torque, and efficiency are calculated by using this method. The multiple objective and multivariable optimization of the maximum fundamental and the minimum harmonic content of back EMF are performed by using response surface methodology. The proposed optimum design method was applied to make a generator. The generator was tested and the calculated results are compared with the proposed method, which show good agreements.

Multi-objective Optimization of Pedestrian Wind Comfort and Natural Ventilation in a Residential Area

  • H.Y. Peng;S.F. Dai;D. Hu;H.J. Liu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.315-320
    • /
    • 2022
  • With the rapid development of urbanization the problems of pedestrian-level wind comfort and natural ventilation of tall buildings are becoming increasingly prominent. The velocity at the pedestrian level ($\overline{MVR}$) and variation of wind pressure coefficients $\overline{{\Delta}C_p}$ between windward and leeward surfaces of tall buildings were investigated systematically through numerical simulations. The examined parameters included building density ρ, height ratio of building αH, width ratio of building αB, and wind direction θ. The linear and quadratic regression analyses of $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were conducted. The quadratic regression had better performance in predicting $\overline{MVR}$ and $\overline{{\Delta}C_p}$ than the linear regression. $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were optimized by the NSGA-II algorithm. The LINMAP and TOPSIS decision-making methods demonstrated better capability than the Shannon's entropy approach. The final optimal design parameters of buildings were ρ = 20%, αH = 4.5, and αB = 1, and the wind direction was θ = 10°. The proposed method could be used for the optimization of pedestrian-level wind comfort and natural ventilation in a residential area.