• Title/Summary/Keyword: multi-modal

Search Result 629, Processing Time 0.024 seconds

Experimental Vibration Analysis of Damped Beam Model Using Multi-degree Curve Fitting Method (다자유도 곡선맞춤법을 이용한 감쇠보 모델의 실험 진동해석)

  • Min, Cheon-Hong;Bae, Soo-Ryong;Park, Han-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.70-74
    • /
    • 2008
  • It is important to reduce the vibration and noise of submarines and ships. For the purpose of noise reduction, various researches are actively being conducted on the employment of complex structures. However, in the case of numerical analysis for complex structures with damping materials, substantial errors can be generated by the absence of an exact damping model. Thus experimental model analysis is necessary for the verification of a numerical analysis for complex structures. In this research, vibration experiments are conducted in order to ascertain the vibration properties of cantilever beam attached damping materials. First, an initial value is obtained by using a direct linear method. Next, based on this initial value, the exact modal parameters of the cantilever beam are obtained by using the Newton-Raphson method.

A modal approach for the efficient analysis of a bionic multi-layer sound absorption structure

  • Wang, Yonghua;Xu, Chengyu;Wan, Yanling;Li, Jing;Yu, Huadong;Ren, Luquan
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.249-266
    • /
    • 2016
  • The interest of this article lies in the proposition of using bionic method to develop a new sound absorber and analyze the efficient of this absorber in a ski cabin. Inspired by the coupling absorption structure of the skin and feather of a typical silent flying bird - owl, a bionic coupling multi-layer structure model is developed, which is composed of a micro-silt plate, porous fibrous material and a flexible micro-perforated membrane backed with airspace. The finite element simulation method with ACTRAN is applied to calculate the acoustic performance of the multi-layer absorber, the vibration modal of the ski cabin and the sound pressure level (SPL) near the skier's ears before and after pasting the absorber at the flour carpet and seats in the cabin. As expected, the SPL near the ears was significantly reduced after adding sound-absorbing material. Among them, the model 2 and model 5 showed the best sound absorption efficiency and the SPL almost reduced 5 dB. Moreover, it was most effctive for the SPL reduction with full admittance configuration at both the carpet and the seats, and the carpet contribution seems to be predominant.

Adaptive Multi-mode Vibration Control of Composite Beams Using Neuro-Controller (신경망 제어기를 이용한 복합재 보의 다중 모드 적응 진동 제어)

  • Yang, Seung-Man;Rew, Keun-Ho;Youn, Se-Hyun;Lee, In
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.39-46
    • /
    • 2001
  • Experimental studies on the adaptive multi-mode vibration control of composite beams have been performed using neuro-controller. Neuro-controllers require too much computational burden, which blocks wide real-time applications of neuro-controllers. Therefore, in this paper, an adaptive notch filter is proposed to separate a vibration signal into each modal vibration signal. Two neuro-controllers with fewer weights are connected to the corresponding modal signals to generate proper modal control forces. The vibration controls using the adaptive notch filter and neuro-controllers have been performed for two specimens. A and B, which have different natural frequencies because of different positions of tip masses. Significant vibration reduction has been observed in both cases. The vibration control results show that the present neuro-controller has good adaptiveness under the system parameter variations.

  • PDF

A BI-Level Programming Model for Transportation Network Design (BI-Level Programming 기법을 이용한 교통 네트워크 평가방법 연구)

  • Kim, Byung-Jong;Kim, Won-Kyu
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.111-123
    • /
    • 2005
  • A network design model has been proposed. which represents a transportation facility investment decision problem. The model takes the discrete hi-level programming form in which two types of decision makers, government and travelers, are involved. The model is characterized by its ability to address the total social costs occurring in transportation networks and to estimate the equilibrium link volumes in multi-modal networks. Travel time and volume for each link in the multi-modal network are predicted by a joint modal split/traffic assignment model. An efficient solution algorithm has been developed and an illustrative example has been presented.

Effectiveness of different standard and advanced pushover procedures for regular and irregular RC frames

  • Landi, Luca;Pollioa, Bernardino;Diotallevi, Pier Paolo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.433-446
    • /
    • 2014
  • The purpose of the research presented in this paper was to investigate the effectiveness of several conventional, multi-modal and adaptive pushover procedures. In particular, an extensive numerical study was performed considering eight RC frames characterized by a variable number of storeys and different properties in terms of regularity in elevation. The results of pushover analyses were compared with those of nonlinear dynamic analyses, which were carried out considering different earthquake records and increasing values of earthquake intensity. The study was performed with reference to base shear-top displacement curves and to different storey response parameters. The obtained results allowed a direct comparison between the pushover procedures, which in general were able to give a fairly good estimate of seismic demand with a tendency to better results for lower frames. The advanced procedures, in particular the multi-modal pushover, provided an improvement of the results, more evident for the irregular frames.

Generalized Nyquist Criterion for the Stability of Xenon Oscillation (일반화된 Nyquist 요건에 의한 제논진동의 안전성 분석)

  • Park, You-Cho;Park, Goon-Cherl;Chung, Chang-Hyun;Park, Chong-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.371-379
    • /
    • 1990
  • The Xenon spatial oscillation may give rise to operational difficulties in a nuclear power plant. In this study, in order to investigate the Xenon instability for a PWR, the frequency-domain technique is adopted by using Generalized Nyquist Criterion, which is more general and suitable for the multi-input/multi-output system. Also linearized modal fluxes are obtained by a modal expansion. This model has been implemented to test the axial Xenon stability of YGN-1 unit against the changes in plant operating parameters ; power level, control rod position, and core average burnup. The results show that the increase of power level and the deeper insertion of control rod have the destabilizing effect, and that the burnup progress makes the core less stable. Also the results show that the overestimation due to modal interaction was found not to be significant.

  • PDF

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

A Study on the Vibration Analysis for the Composite Multi-axial Optical Structure of an Aircraft (항공기용 복합재료 다축 광학 구조의 진동해석에 관한 연구)

  • Kim, Dae-Young;Kwak, Jae-Hyuck;Lee, Jun-Ho;Park, Kwang-Woo;Jeong, Kwang-Young;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.14-21
    • /
    • 2011
  • In this paper, a dynamic model is proposed for multi-axis optical structure of an aircraft. Modal analysis, sine-wave analysis, and random vibration analysis are done using a multi-body dynamic program for the multi-axis optical structure. By applying Al 6061-T6 and two types of CFRP to the camera module, x, y, and z responses are found and compared according to each axis excitation. The results will be used for reducing the weight of the camera module.

Loosely supported multi-span tube damping according to the support clearance (지지점 간극을 갖는 다점지지 관의 지지점 간극 크기에 따른 감쇠특성 비교)

  • Lee, Kanghee;Kang, Heungseok;Shin, Changhwan;Kim, Jaeyong;Lee, Chiyoung;Park, Taejung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.402-403
    • /
    • 2014
  • Damping of multi-span tube with loose supports according to the finite support clearances is investigated through the experimental modal analysis. Loose intermediate support leads to strong nonlinearity in tube dynamics, provides statistical nature, and increases tube damping through impacting and friction at the supports. Fraction of critical damping was estimated by the modal curve fitting to parameter estimation from the measured frequency response functions. Magnitude of random excitation force, which can reproduce the in-situ excitation in operating environment, was maintained as constant value with a fine tolerance during vibration testing. Range of input force was carefully selected to cover from the low magnitude excitation for linearly behaved tube motion to high magnitude of force for nonlinearly-behaved tube motion. Estimated critical damping ratio shows scatters in data and tends to increase as the magnitude of rising force and decrease with upward frequency variation. Larger size of support gap increases multi-span tube damping for high magnitude of excitation.

  • PDF