• Title/Summary/Keyword: multi-mobility sharing service

Search Result 3, Processing Time 0.016 seconds

Development of the Multi-mobility Sharing Service Management System - A Case Study of Kashiwa City, Japan -

  • Kim, Jae-Youl;Tsubouchi, Kota;Yamato, Hiroyuki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.75-85
    • /
    • 2014
  • Existing car-sharing systems have difficulty meeting the demands of one-way trips and connecting to other sharing systems. Therefore, in this study, a multi-mobility sharing service management system that was able to meet the demands of the one-way and round-way trips and shared diverse transportation modes such as cars (electric car/gasoline car), electric motorcycles and bicycles was developed, and a field study was conducted in Kashiwa-no-ha, Kashiwa City and Nagareyama City, Chiba Prefecture, Japan. As a result of the field test, it was confirmed that this system supplied the one-way demands for 54.9% of total car trips and 43.9% of the user used multiple transportation modes by the common interface. In addition, this system contributed to reduce carbon dioxide emissions by sharing vehicles and using eco-friendly vehicles. The developed sharing system is expected to improve mobility by meeting more various types of traffic demand than existing car sharing systems.

Dynamic Multi-frame Transmission Technology Using the WiMedia MAC for Multi-hop N-screen Services

  • Hur, Kyeong
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • N-screen is a promising technology to improve support for multimedia multicasting, content sharing, content mobility, media scalability, and seamless mobility. In this paper, the WiMedia distributed-MAC (D-MAC) protocol is adopted for development of a seamless N-screen wireless service. Furthermore, to provide a multi-hop, one source multi-use N-screen service through point to point streaming in a seamless D-MAC protocol, a dynamic multi-frame transmission technology is proposed. In this technology, a dynamic time slot allocation scheme and a multi-hop resource reservation scheme are combined. In the proposed dynamic time slot allocation scheme, two thresholds, a hard threshold and a soft threshold, are included to satisfy the power consumption and delay requirements. A multi-frame DRP reservation scheme is proposed to minimize end-to-end delay during the multi-hop transmissions between N-screen devices. The proposed dynamic multi-frame transmission scheme enhances N-screen performance in terms of the multi-hop link establishment success rate and link establishment time compared to the conventional WiMedia D-MAC system.

Research on UAV access deployment algorithm based on improved virtual force model

  • Zhang, Shuchang;Wu, Duanpo;Jiang, Lurong;Jin, Xinyu;Cen, Shuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2606-2626
    • /
    • 2022
  • In this paper, a unmanned aerial vehicle (UAV) access deployment algorithm is proposed, which is based on an improved virtual force model to solve the poor coverage quality of UAVs caused by limited number of UAVs and random mobility of users in the deployment process of UAV base station. First, the UAV-adapted Harris Hawks optimization (U-AHHO) algorithm is proposed to maximize the coverage of users in a given hotspot. Then, a virtual force improvement model based on user perception (UP-VFIM) is constructed to sense the mobile trend of mobile users. Finally, a UAV motion algorithm based on multi-virtual force sharing (U-MVFS) is proposed to improve the ability of UAVs to perceive the moving trend of user equipments (UEs). The UAV independently controls its movement and provides follow-up services for mobile UEs in the hotspot by computing the virtual force it receives over a specific period. Simulation results show that compared with the greedy-grid algorithm with different spacing, the average service rate of UEs of the U-AHHO algorithm is increased by 2.6% to 35.3% on average. Compared with the baseline scheme, using UP-VFIM and U-MVFS algorithms at the same time increases the average of 34.5% to 67.9% and 9.82% to 43.62% under different UE numbers and moving speeds, respectively.