• Title/Summary/Keyword: multi-linear systems

Search Result 515, Processing Time 0.03 seconds

Evaluation Method of the Multi-axis Errors for Machining Centers (머시닝센터의 다축오차 평가 방법)

  • Hwang, Joo-Ho;Shim, Jong-Youp;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.904-914
    • /
    • 2011
  • The volumetric errors of CNC machining centers are determined by 21 errors, including 3 linear errors, 6 straightness errors, 3 perpendicular errors, 9 angular errors and non-rigid body errors of the machine tool. It is very time consuming and hard to measure all of these errors in which laser interferometer and other parts are used directly. Hence, as many as 21 separate setups and measurements are needed for the linear, straightness, angular and perpendicular errors. In case of the 5-axis machining centers, two more rotary tables are used. It can make 35 error sources of the movement. Therefore, the measured errors of multi movements of the 5-axis tables are very complicated, even if the relative measured errors are measured. This paper describes the methods, those analyze the error sources of the machining centers. Those are based on shifted diagonal measurements method (SDM), R-test and Double ball bar. In case, the angular errors of machine are small enough comparing with others, twelve errors including three linear position errors, six straightness errors and three perpendicular errors can be calculated by using SDM. To confirm the proposed method, SDM was applied to measuring 3 axes of machine tools and compared with directly measurement of each errors. In addition, the methods for measuring relative errors of multi-axis analysis methods using R-test and Double Ball Bar are introduced in this paper.

Development of Modeling and control Methods for Multi-DOF dielectric polymer actuator

  • Jung, M.Y.;Jung, K.M.;Koo, J.C.;Choi, H.R.;Nam, J.D.;Lee, Y.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1225-1228
    • /
    • 2004
  • Principles and mechanism of energy transduction of dielectric polymer materials are well known from the various smart material related publications. However their introduction to industrial actuator applications is limited mainly due to difficulties guarantee controllability and reliability. Most of the previous publications have elaborates energy transduction physics of chunk of polymer while development of construction methods for feasible actuators made of the material is rarely proposed. In the present article, a conceptual design of multi-DOF linear polymer actuator construction that is to be controllable with moderate level of control work os introduced. In addition, numerical models that are developed with a unified energy based approach are presented not only for basic working mechanism analysis of the polymetric soft actuator but for providing analytical foundation to expend the concept toward design of multi-DOF actuator controls.

  • PDF

Joint Energy Efficiency Optimization with Nonlinear Precoding in Multi-cell Broadcast Systems

  • Gui, Xin;Lee, Kyoung-Jae;Jung, Jaehoon;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.873-883
    • /
    • 2016
  • In this paper, we focus on maximizing weighted sum energy efficiency (EE) for a multi-cell multi-user channel. In order to solve this non-convex problem, we first decompose the original problem into a sequence of parallel subproblems which can optimized separately. For each subproblem, a base station employs dirty paper coding to maximize the EE for users within a cell while regulating interference induced to other cells. Since each subproblem can be transformed to a convex multiple-access channel problem, the proposed method provides a closed-form solution for power allocation. Then, based on the derived optimal covariance matrix for each subproblem, a local optimal solution is obtained to maximize the sum EE. Finally, simulation results show that our algorithm based on non-linear precoding achieves about 20 percent performance gains over the conventional linear precoding method.

Robust Multiloop Controller Design of Uncertain Affine TFM(Transfer Function Matrix) System (불확실한 Affine TFM(Transfer Function Matrix) 시스템의 강인한 다중 루프 제어기 설계)

  • Byun Hwang-Woo;Yang Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • This paper provides sufficient conditions for the robustness of Affine linear TFM(Transfer Function Matrix) MIMO (Multi-Input Multi-Output) uncertain systems based on Rosenbrock's DNA (Direct Nyquist Array). The parametric uncertainty is modeled through a Affine TFM MIMO description, and the unstructured uncertainty through a bounded perturbation of Affine polynomials. Gershgorin's theorem and concepts of diagonal dominance and GB(Gershgorin Bands) are extended to include model uncertainty. For this type of parametric robust performance we show robustness of the Affine TFM systems using Nyquist diagram and GB, DNA(Direct Nyquist Array). Multiloop PI/PB controllers can be tuned by using a modified version of the Ziegler-Nickels (ZN) relations. Simulation examples show the performance and efficiency of the proposed multiloop design method.

Intelligent Washing Machine: A Bioinspired and Multi-objective Approach

  • Milasi, Rasoul Mohammadi;Jamali, Mohammad Reza;Lucas, Caro
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.436-443
    • /
    • 2007
  • In this paper, an intelligent method called BELBIC (Brain Emotional Learning Based Intelligent Controller) is used to control of Locally Linear Neuro-Fuzzy Model (LOLIMOT) of Washing Machine. The Locally Linear Neuro-Fuzzy Model of Washing Machine is obtained based on previously extracted data. One of the important issues in using BELBIC is its parameters setting. On the other hand, the controller design for Washing Machine is a multi objective problem. Indeed, the two objectives, energy consumption and effectiveness of washing process, are main issues in this problem, and these two objectives are in contrast. Due to these challenges, a Multi Objective Genetic Algorithm is used for tuning the BELBIC parameters. The algorithm provides a set of non-dominated set points rather than a single point, so the designer has the advantage of selecting the desired set point. With considering the proper parameters after using additional assumptions, the simulation results show that this controller with optimal parameters has very good performance and considerable saving in energy consumption.

Development of Multi-Purpose Variable Polarization Imaging System for Clinical Diagnosis (임상 진단용 다목적 가변 편광 영상장치 개발)

  • Bae, Young-Woo;Jung, Byung-Jo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.265-270
    • /
    • 2007
  • Polarization imaging systems have been widely used to selectively characterize skin lesions. Nevertheless, current systems are used in single-mode due to the limitations of a fixed polarization mode and a single-working distance of light source, in which uniform light distribution is achieved on target area. To address such limitations, we developed a variable polarization imaging system based on multi-working distance of light source for various clinical diagnoses. In this study, we characterize the imaging system and present experiment results demonstrating its clinical usefulness. The imaging system consists of a CCD color camera, linear polarization filters, and a single-layered LED ring light source which provides uniform light distribution at multi-working distances. The first polarizer was placed on the light source and the second polarizer placed on objective lens provides continuous linear polarization angle from $0^{\circ}\;to\;90^{\circ}$. The clinical efficacy of the imaging system was investigated by acquiring and analyzing clinical images of skin wrinkle and dental plaque. With the experiments, we verified the potential usefulness of the imaging system for other clinical applications.

Parameter Estimation of Single and Decentralized Control Systems Using Pulse Response Data

  • Cheres, Eduard;Podshivalov, Lev
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2003
  • The One Pass Method (OPM) previously presented for the identification of single input single output systems is used to estimate the parameters of a Decentralized Control System (DCS). The OPM is a linear and therefore a simple estimation method. All of the calculations are performed in one pass, and no initial parameter guess, iteration, or powerful search methods are required. These features are of interest especially when the parameters of multi input-output model are estimated. The benefits of the OPM are revealed by comparing its results against those of two recently published methods based on pulse testing. The comparison is performed using two databases from the literature. These databases include single and multi input-output process transfer functions and relevant disturbances. The closed loop responses of these processes are roughly captured by the previous methods, whereas the OPM gives much more accurate results. If the parameters of a DCS are estimated, the OPM yields the same results in multi or single structure implementation. This is a novel feature, which indicates that the OPM is a convenient and practice method for the parameter estimation of multivariable DCSs.

Vibration Control of Multi-Degree-of-Freedem Structure by Nonlinear TEX>$H_\infty$ Control

  • Kubota, Kenta;Sampei, Mitsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.354-358
    • /
    • 1994
  • This study is concerned with H$_{\infty}$ control theory of nonlinear systems. Recently H$_{\infty}$ control theory has been developed to nonlinear systems, and especially nonlinear H$_{\infty}$ control theory based on the Hamilton-Jacobi inequality has been proposed. This corresponds to linear H$_{\infty}$ control theory based on the Riccati equation. In this paper, we apply it to a semi-active dynamic vibration absorber for multi-degree-of-freedom structure, and we design its state feedback controller via the Riccati equation. In the simulation, we show that it is effective for a vibration control.rol.

  • PDF

MIMO Variable Structure Control System with Sliding Sector (슬라이딩 섹터를 갖는 다중 입출력 가변 구조 제어 시스템)

  • Choi Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.524-529
    • /
    • 2006
  • In this paper, we propose a method to design variable structure systems with sliding sector for multi-input multi-output systems with mismatched uncertainties in the state matrix. For the uncertain systems we define sliding sectors within which a norm of the state decreases with zero input despite of mismatched uncertainties. Using the notion of the sliding sector we give simple design algorithms of variable structure control laws that can reduce the chattering. Finally, we give a design example in order to show the effectiveness of our method.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.