• Title/Summary/Keyword: multi-linear regression analysis

Search Result 124, Processing Time 1.381 seconds

Comparison of User's Satisfaction between 4-bedroom and 5/6-bedroom in Single General Hospital (일개 종합병원 4인실과 5/6인실 사용자의 만족도 비교)

  • Lee, Chan Hee;Lim, Hyunsun;Yoon, Soojin;Park, Eun-Cheol;Kang, Jung-Gu
    • Korea Journal of Hospital Management
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2016
  • Purpose: The purpose of this study is to compare the user satisfaction between 4-bedrooms and 5/6-bedrooms in a single general hospital. Methodology: To measure and compare multiple-bed ward user satisfaction between 4-bedrooms and 5/6-bedrooms, questionnaires were collected from 916 inpatients and 129 nurses in a single general hospital. The patient satisfaction questionnaire categories included environmental conditions, protection of privacy, and medical services. The nurse satisfaction questionnaire categories included space, infection control, patient safety, work load and psychologic view point. Findings: Satisfaction of patient who admitted in 4-bedroom to the environmental conditions and protection of privacy was higher than that of 5/6-bedroom group (3.91 vs. 3.25, p<0.001). Satisfaction of nurse who worked in 4-bedroom was higher than that of 5/6-bedroom (3.05 vs. 1.92, p<0.001). By the multiple linear regression analysis, patient satisfaction to the environmental conditions and protection of privacy was related with multi-bedroom type and location of beds; 4-bedrooms were higher than 5/6-bedrooms(p<0.001), window side bed were higher than hallway side bed(p=0.001). There was no satisfaction difference in comparing medical services between the two groups. By the multiple linear mixed regression analysis, nurse satisfaction who were assigned for 4-bedrooms were higher than that of 5/6-bedrooms in all categories(p<0.001). Practical Implications: Even though no difference has shown in medical services satisfaction between the two patient groups, multi-bedroom type may affect patient satisfaction in environmental condition, protection of privacy and may also affect overall nurse satisfaction. This result suggests that to improve multi-bedroom user satisfaction, 4-bedroom is recommended over 5/6-bedroom.

Development of Neural Network Model for Pridiction of Daily Maximum Ozone Concentration in Summer (하계의 일 최고 오존농도 예측을 위한 신경망모델의 개발)

  • 김용국;이종범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.224-232
    • /
    • 1994
  • A new neural network model has been developed to predict short-term air pollution concentration. In addition, a multiple regression model widely used in statistical analysis was tested. These models were applied for prediction of daily maximum ozone concentration in Seoul during the summer season of 1991. The time periods between May and September 1989 and 1990 were utilized to train set of learning patterns in neural network model, and to estimate multiple regression model. To evaluate the results of the different models, several Performance indices were used. The results indicated that the multiple regression model tended to underpredict the daily maximum ozone concentration with small r$^{2}$(0.38). Also, large errors were found in this model; 21.1 ppb for RMSE, 0.324 for NMSE, and -0.164 for MRE. On the other hand, the results obtained from the neural network model were very promising. Thus, we can know that this model has a prominent efficiency in the adaptive control for the non-linear multi- variable systems such as photochemical oxidants. Also, when the recent new information was added in the neural network model, prediction accuracy was increased. From the new model, the values of RMSE, NMSE and r$^{2}$ were 13.2ppb, 0.089, 0.003 and 0.55 respectively.

  • PDF

A Study of Estimation of the Arc Stability in Short-circuition Transfer Region of GMA Welding Using Multi-layer Perceptrons (다층 신경회로망을 이용한 GMA 용접 단락이행영역에서의 아크 안정성 평가)

  • 강문진;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.98-106
    • /
    • 1999
  • In GMAW, the spatters are generated according to the variation of the arc. Of the arc is stable, Few spatters are generated. But if unstable, too many spatters are generated. So, this means the spatters are dependent on the arc state. The aim of this study is to accurately estimate the arc state. To do this, the generated spatters were captured under the some welding conditions, and the waveforms of the arc voltage and welding current were collected. From the collected signals, the waveform factors and their standard deviations were extracted. Using these factors as input parameters of multi-layer artificial neural network, the learning for the weight of the generated spatters is performed and the estimation results to the real spatter are assessed. Obtained results are as follow: the linear correlation coefficient between the estimated result and the real spatters was 0.9986. And although the average convergence error was set 0.002, the estimated error to the real spatter was within 0.1 gr/min at each welding condition. In the estimation for the weight generated spatters, the result with multi-layer neural network was far better than with multiple regression analysis. Especially, even though under the welding condition which the arc state is unstable (the spatter is generated much more), very excellent estimation performance was shown.

  • PDF

Prediction of Cobb-angle for Monitoring System in Adolescent Girls with Idiopathic Scoliosis using Multiple Regression Analysis

  • Seo, Eun Ji;Choi, Ahnryul;Oh, Seung Eel;Park, Hyun Joon;Lee, Dong Jun;Mun, Joung H.
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.64-71
    • /
    • 2013
  • Purpose: The purpose of this study was to select standing posture parameters that have a significant difference according to the severity of spinal deformity, and to develop a novel Cobb angle prediction model for adolescent girls with idiopathic scoliosis. Methods: Five normal adolescents girls with no history of musculoskeletal disorders, 13 mild scoliosis patients (Cobb angle: $10^{\circ}-25^{\circ}$), and 14 severe scoliosis patients (Cobb angle: $25^{\circ}-50^{\circ}$) participated in this study. Six infrared cameras (VICON) were used to acquire data and 35 standing parameters of scoliosis patients were extracted from previous studies. Using the ANOVA and post-hoc test, parameters that had significant differences were extracted. In addition, these standing posture parameters were utilized to develop a Cobb-angle prediction model through multiple regression analysis. Results: Twenty two of the parameters showed differences between at least two of the three groups and these parameters were used to develop the multi-linear regression model. This model showed a good agreement ($R^2$ = 0.92) between the predicted and the measured Cobb angle. Also, a blind study was performed using 5 random datasets that had not been used in the model and the errors were approximately $3.2{\pm}1.8$. Conclusions: In this study, we demonstrated the possibility of clinically predicting the Cobb angle using a non-invasive technique. Also, monitoring changes in patients with a progressive disease, such as scoliosis, will make possible to have determine the appropriate treatment and rehabilitation strategies without the need for radiation exposure.

Analysis of First Wafer Effect for Si Etch Rate with Plasma Information Based Virtual Metrology (플라즈마 정보인자 기반 가상계측을 통한 Si 식각률의 첫 장 효과 분석)

  • Ryu, Sangwon;Kwon, Ji-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.146-150
    • /
    • 2021
  • Plasma information based virtual metrology (PI-VM) that predicts wafer-to-wafer etch rate variation after wet cleaning of plasma facing parts was developed. As input parameters, plasma information (PI) variables such as electron temperature, fluorine density and hydrogen density were extracted from optical emission spectroscopy (OES) data for etch plasma. The PI-VM model was trained by stepwise variable selection method and multi-linear regression method. The expected etch rate by PI-VM showed high correlation coefficient with measured etch rate from SEM image analysis. The PI-VM model revealed that the root cause of etch rate variation after the wet cleaning was desorption of hydrogen from the cleaned parts as hydrogen combined with fluorine and decreased etchant density and etch rate.

Physicochemical water quality characteristics in relation to land use pattern and point sources in the basin of the Dongjin River and the ecological health assessments using a fish multi-metric model

  • Jang, Geon-Su;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.34-44
    • /
    • 2016
  • Background: Little is known about how chemical water quality is associated with ecological stream health in relation to landuse patterns in a watershed. We evaluated spatial characteristics of water quality characteristics and the ecological health of Dongjin-River basin, Korea in relation to regional landuse pattern. The ecological health was assessed by the multi-metric model of Index of Biological Integrity (IBI), and the water chemistry data were compared with values obtained from the health model. Results: Nutrient and organic matter pollution in Dongjin-River basin, Korea was influenced by land use pattern and the major point sources, so nutrients of TN and TP increased abruptly in Site 4 (Jeongeup Stream), which is directly influenced by wastewater treatment plants along with values of electric conductivity (EC), bacterial number, and sestonic chlorophyll-a. Similar results are shown in the downstream (S7) of Dongjin River. The degradation of chemical water quality in the downstream resulted in greater impairment of the ecological health, and these were also closely associated with the landuse pattern. Forest region had low nutrients (N, P), organic matter, and ionic content (as the EC), whereas urban and agricultural regions had opposite in the parameters. Linear regression analysis of the landuse (arable land; $A_L$) on chemicals indicated that values of $A_L$ had positive linear relations with TP ($R^2=0.643$, p < 0.01), TN ($R^2=0.502$, p < 0.05), BOD ($R^2=0.739$, p < 0.01), and suspended solids (SS; ($R^2=0.866$, p < 0.01), and a negative relation with TDN:TDP ratios ($R^2=0.719$, p < 0.01). Conclusions: Chemical factors were closely associated with land use pattern in the watershed, and these factors influenced the ecological health, based on the multimetric fish IBI model. Overall, the impairments of water chemistry and the ecological health in Dongjin-River basin were mainly attributes to point-sources and land-use patterns.

Determinants of employee's wage using hierarchical linear model (위계적 선형모형을 이용한 대졸 신규취업자 임금 결정요인 분석)

  • Park, Sungik;Cho, Jangsik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • This paper analyzes the determinants of wage for the college and university graduates utilizing both individual-level and industry-level variables. We note that wage determination has multi-level structure in the sense that individual wage is influenced by individual-level variables (level-1) and industry-level (level-2) variables. Then, the assumption that individual wage is independent in the classical regression is violated. Therefore, this paper utilizes the hierarchical linear model (HLM). The major results are the followings. First, the multiple correspondence analysis including level-1 and 2 variables reveals that both level 1 and level 2 variables affects individual wages judging from the fact that the values of level 1 and level 2 variables differ across the different level of individual wage groups. Second, the decision tree analysis including level-1 and 2 variables shows that the most influential variable in wage determination is industry-level wage and the next is industry-level working hour, ages and sex in the decling order in. This suggests that the utilization of the HLM is appropriate since the characteristics of industry is important in determining the individual wage. Third, it is shown that the HLM model is the best compared to the other models which do not take level-1 and level-2 variables simultaneously into account.

Development of Traffic Accident Rate Forecasting Models for Trumpet IC Exit Ramp of Freeway using Variables Transformation Method (변수변환 기법을 이용한 고속도로 트럼펫IC 유출연결로 교통사고율 예측모형 개발)

  • Yoon, Byoung-Jo
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.139-150
    • /
    • 2008
  • In this study, It is focused on development of the forecasting model about trumpet InterChange(IC) ramp accident because of the frequency of accident in ramp more than highway basic section and trend the increasing accident in ramp. The independent variables was selected through statistical analysis(correlation analysis, multi-collinearity etc) by ramp types(direct, semi-direct and loop). The independent variables and accident rate is non-linear relationship. So it made new variables by transformation of the independent variables. The forecasting models according to exit-ramp type (direct, semi-direct and loop) are built with statistical multi-variable regression using all possible regression method. And the forecasts of the models showed high accuracy statistically. It is expected that the developed models could be employed to design trumpet IC ramp more cost-efficiently and safely and to analyze the causes of traffic accidents happened on the IC ramp.

  • PDF

Estimation of drift force by real ship using multiple regression analysis (다중회귀분석에 의한 실선의 표류력 추정)

  • AHN, Jang-Young;KIM, Kwang-il;KIM, Min-Son;LEE, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.236-245
    • /
    • 2021
  • In this study, a drifting test using a experimental vessel (2,966 tons) in the northern waters of Jeju was carried out for the first time in order to obtain the fundamental data for drift. During the test, it was shown that the average leeway speed and direction by GPS position were 0.362 m/s and 155.54° respectively and the leeway rate for wind speed was 8.80%. The analysis of linear regression modes about leeway speed and direction of the experimental vessel indicated that wind or current (i.e. explanatory variable) had a greater influence upon response variable (e.g. leeway speed or direction) with the speed of the wind and current rather than their directions. On the other hand, the result of multiple regression model analysis was able to predict that the direction was negative, and it was demonstrated that predicted values of leeway speed and direction using an experimental vessel is to be more influential by current than wind while the leeway speed through variance and covariance was positive. In terms of the leeway direction of the experimental vessel, the same result of the leeway speed appeared except for a possibility of the existence of multi-collinearity. Then, it can be interpreted that the explanatory variables were less descriptive in the predicted values of the leeway direction. As a result, the prediction of leeway speed and direction can be demonstrated as following equations. Ŷ1= 0.4031-0.0032X1+0.0631X2-0.0010X3+0.4110X4 Ŷ2= 0.4031-0.6662X1+27.1955X2-0.6787X3-420.4833X4 However, many drift tests using actual vessels and various drifting objects will provide reasonable estimations, so that they can help search and rescue fishing gears as well.

A parameter calibration method for PFC simulation: Development and a case study of limestone

  • Xu, Z.H.;Wang, W.Y.;Lin, P.;Xiong, Y.;Liu, Z.Y.;He, S.J.
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • The time-consuming and less objectivity are the main problems of conventional micromechanical parameters calibration method of Particle Flow Code simulations. Thus this study aims to address these two limitation of the conventional "trial-and-error" method. A new calibration method for the linear parallel bond model (CM-LPBM) is proposed. First, numerical simulations are conducted based on the results of the uniaxial compression tests on limestone. The macroscopic response of the numerical model agrees well with the results of the uniaxial compression tests. To reduce the number of the independent micromechanical parameters, numerical simulations are then carried out. Based on the results of the orthogonal experiments and the multi-factor variance analysis, main micromechanical parameters affecting the macro parameters of rocks are proposed. The macro-micro parameter functions are ultimately established using multiple linear regression, and the iteration correction formulas of the micromechanical parameters are obtained. To further verify the validity of the proposed method, a case study is carried out. The error between the macro mechanical response and the numerical results is less than 5%. Hence the calibration method, i.e., the CM-LPBM, is reliable for obtaining the micromechanical parameters quickly and accurately, providing reference for the calibration of micromechanical parameters.