• Title/Summary/Keyword: multi-linear regression

검색결과 220건 처리시간 0.023초

서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교 (Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea)

  • 강은진;유철희;신예지;조동진;임정호
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1739-1756
    • /
    • 2021
  • 대기 중 이산화질소(NO2)는 주로 인위적인 배출요인으로 발생하며 화학 반응을 통해 이차오염 물질 및 오존 형성에 매개 역할을 하는 인체 건강에 악영향을 미치는 물질이다. 우리나라는 지상 관측소에 의한 실시간 NO2 모니터링을 수행하고 있지만, 이는 점 기반의 관측 값으로써 미관측 지역의 공간 분포 분석이 어렵다는 한계점을 지닌다. 본 연구에서는 선형 회귀 기반 모델인 다중 선형 회귀와 회귀 크리깅, 기계학습 알고리즘인 Random Forest (RF), Support Vector Regression (SVR)을 적용한 공간 내삽 모델링을 통해 서울 지역의 지상 NO2 농도 지도를 제작하였고, 일별 Leave-One-Out Cross Validation (LOOCV) 교차 검증을 시행하였다. 2020년 연구기간 내 일별 LOOCV에서 MLR, RK, SVR 모델의 일별 평균 Index of agreement (IOA)는 약 0.57로 유사한 성능을 보였으며, RF (0.50)보다 높은 성능이 확인되었다. RK의 일별 평균 nRMSE는 0.9483%으로 MLR (0.9501%)보다 상대적으로 낮은 오차를 나타냈다. MLR과 RK, RF 모델의 계절별 공간 분포는 비슷한 양상을 보였으며, RF는 다른 모델에 비해 좁은 NO2 농도 범위가 확인되었다. 본 연구에서 제안된 선형 회귀 기반 공간 내삽은 지상 NO2 뿐 아니라 다른 대기 오염 물질의 도시 지역 공간 내삽을 위해 활용 가능성이 높을 것으로 기대된다.

Cone-beam CT와 multi-detector CT영상에서 측정된 CT number에 대한 비교연구 (Comparison of CT numbers between cone-beam CT and multi-detector CT)

  • 김동수;한원정;김은경
    • Imaging Science in Dentistry
    • /
    • 제40권2호
    • /
    • pp.63-68
    • /
    • 2010
  • Purpose : To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Materials and Methods : Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, $\rho$ ($g/cm^3$), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. Results : CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were $\rho$=0.001H+1.07 with $R^2$ value of 0.999 for Somatom Emotion, $\rho$=0.002H+1.09 with $R^2$ value of 0.991 for Alphard VEGA, $\rho$=0.001H+1.43 with $R^2$ value of 0.980 for i-CAT and $\rho$=0.001H+1.30 with $R^2$ value of 0.975 for Implagraphy. Conclusion: CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

A Dual Problem of Calibration of Design Weights Based on Multi-Auxiliary Variables

  • Al-Jararha, J.
    • Communications for Statistical Applications and Methods
    • /
    • 제22권2호
    • /
    • pp.137-146
    • /
    • 2015
  • Singh (2013) considered the dual problem to the calibration of design weights to obtain a new generalized linear regression estimator (GREG) for the finite population total. In this work, we have made an attempt to suggest a way to use the dual calibration of the design weights in case of multi-auxiliary variables; in other words, we have made an attempt to give an answer to the concern in Remark 2 of Singh (2013) work. The same idea is also used to generalize the GREG estimator proposed by Deville and S$\ddot{a}$rndal (1992). It is not an easy task to find the optimum values of the parameters appear in our approach; therefore, few suggestions are mentioned to select values for such parameters based on a random sample. Based on real data set and under simple random sampling without replacement design, our approach is compared with other approaches mentioned in this paper and for different sample sizes. Simulation results show that all estimators have negligible relative bias, and the multivariate case of Singh (2013) estimator is more efficient than other estimators.

Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review

  • Reza Sarkhani Benemaran;Mahzad Esmaeili-Falak
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.507-527
    • /
    • 2023
  • Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.

인공신경망 기법을 이용한 사면의 내진성능평가 모델 제안 (A Propose on Seismic Performance Evaluation Model of Slope using Artificial Neural Network Technique)

  • 곽신영;함대기
    • 한국전산구조공학회논문집
    • /
    • 제32권2호
    • /
    • pp.93-101
    • /
    • 2019
  • 이 연구의 목적은 인공신경망 기법을 이용하여 사면의 내진 성능을 비교적 정확하면서도 효율적으로 예측하는 모델을 도출하는데 있다. 사면의 내진 성능은 지진입력 및 사면모델의 무작위성 및 불확실성으로 인하여 정량화하기 쉽지 않다. 이러한 배경 아래 사면에 대한 확률론적 지진 취약도 분석이 몇몇 연구자에 의해 수행되었고, 이를 기반으로 다중 선형회귀분석을 통하여 사면 내진성능에 대한 닫힌식이 제안된 바 있다. 그러나 전통적인 통계학적 선형회귀분석은 다양한 조건의 사면과 이에 따른 내진 성능 사이의 비선형적 관계를 정확하게 표현하지 못하는 한계를 보였다. 이에 따라 본 연구에서는 이러한 문제점을 극복하고자 인공신경망 기법을 사면 내진성능 예측 모델을 생성하는데 적용하였다. 도출된 모델의 유효성은 기존의 다중 선형 및 다중 비선형 회귀분석을 통한 모델과 비교하여 검증하였다. 결과적으로 이전 연구의 전통적인 통계학적 회귀 분석을 통한 모델과 비교 결과, 기본적으로 인공신경망 기법을 통하여 도출된 모델이 사면의 내진성능을 예측하는데 있어 우수한 성능을 보여주었다. 이러한 정확도 높은 모델은 향후 확률에 기반한 사면의 지진취약도 지도를 개발하고, 주요 구조물의 인근 사면으로 인한 리스크를 효과적으로 평가하는데 활용될 수 있을 것이라 기대된다.

기본적인 연관평가기준 전부를 고려한 비선형 회귀모형에 의한 연관성 규칙 수의 결정 (Non-linear regression model considering all association thresholds for decision of association rule numbers)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.267-275
    • /
    • 2013
  • 데이터 마이닝 기법들 중에서도 연관성 규칙은 가장 최근에 개발된 기법으로 대용량 데이터베이스에서 각 항목들 간의 관련성을 찾아내며, 두 항목간의 관계를 명확히 수치화함으로써 두 개 이상의 항목간의 관련성을 표시하여 주기 때문에 현장에서 직접 적용이 가능하다. 일반적으로 연관성 규칙 생성 여부를 판단할 때, 각 항목간의 연관성을 반영하는 기준인 지지도, 신뢰도, 향상도 등의 흥미도 측도를 활용하게 된다. 실제적으로 연관성 규칙의 수를 결정하기 위해서는 이들 흥미도 측도들의 평가기준을 정하기 위해 반복적으로 조정 과정을 거쳐야 한다. 본 논문에서는 이러한 문제를 해결하기 위해 연관성 평가기준 모두를 일반적으로 많이 활용되고 있는 비선형 회귀모형에 적용하여 연관성 규칙의 수를 추정하는 방안을 강구하였다. 또한 분산팽창계수를 이용하여 다중공선성 문제를 진단하는 동시에 분산분석 결과와 수정 결정계수를 이용하여 각 모형의 기여도를 비교하여 가장 바람직한 회귀 모형을 구하였다.

신경망기법을 활용한 선박 가치평가 모델 개발 (Development of Ship Valuation Model by Neural Network)

  • 김동균;최정석
    • 해양환경안전학회지
    • /
    • 제27권1호
    • /
    • pp.13-21
    • /
    • 2021
  • 본 연구의 목적은 Neural Network Regression 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고, 2000년 1월부터 2020년 8월까지의 해당 데이터를 확보하였다. 변수의 안정성을 판단하기 위해 다중 공선성 검사를 수행하여 최종적으로 6개의 독립변수와 1개의 종속변수를 선정하고 연구 구조를 설계하였다. 이를 바탕으로 Linear Regression, Neural Network Regression, Random Forest Algorithm을 활용하여 총 9개의 시뮬레이션 모델을 설계하였다. 또한 각 모델간의 비교검증을 통해 평가결과의 정확성을 제고시켰다. 평가 결과, VLCC실제값과의 비교를 통해 2층으로 구성된 Hidden Layer의 Neural Network Regression 모델이 가장 정확도가 높은 것으로 나타났다. 본 연구의 시사점은 첫째, 기존 정형화된 평가기법에서 벗어나 기계학습기반 모델을 선박가치평가에 적용하였다는 점이다. 둘째, 해운시장 변화요인을 동태적 관점에서 분석하고 예측함으로써 연구결과의 객관성을 제고시켰다고 할 수 있다.

최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법을 이용한 지속 모음 모델링 (Sustained Vowel Modeling using Nonlinear Autoregressive Method based on Least Squares-Support Vector Regression)

  • 장승진;김효민;박영철;최홍식;윤영로
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.957-963
    • /
    • 2007
  • 본 연구에서는 비선형 지속 모음 모델링을 위한 최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법을 소개하고 분석하였다. 비주기적인 파형 특성을 갖는 양성 후두 질환자 43명의 지속 모음을 대상으로 한 실험에서 제안된 비선형 합성기는 거의 완벽하게 혼란한 지속 모음을 생성하고 선형 예측 코딩은 할 수 없는 주파수 변동과 같은 자연스러운 음의 특성 또한 보존할 수 있었다. 하지만 일부 모음의 합성 결과 실제 원음과 다른 차이점을 보였다. 이러한 결과들은 단일 밴드 모델이 음의 고주파 성분을 조정, 분해 못하기 때문에 발생한 것이라 가정된다. 그러므로 웨이블릿 필터 뱅크를 이용한 멀티 밴드 모델을 단일 밴드 모델과 대치하여 실험을 수행한 결과 향상된 안정성을 보였다. 결과적으로 최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법은 성공적으로 원음에 가까운 합성음을 생성할 수 있다는 것을 확인 할 수 있었다.

The Method for Generating Recommended Candidates through Prediction of Multi-Criteria Ratings Using CNN-BiLSTM

  • Kim, Jinah;Park, Junhee;Shin, Minchan;Lee, Jihoon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.707-720
    • /
    • 2021
  • To improve the accuracy of the recommendation system, multi-criteria recommendation systems have been widely researched. However, it is highly complicated to extract the preferred features of users and items from the data. To this end, subjective indicators, which indicate a user's priorities for personalized recommendations, should be derived. In this study, we propose a method for generating recommendation candidates by predicting multi-criteria ratings from reviews and using them to derive user priorities. Using a deep learning model based on convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM), multi-criteria prediction ratings were derived from reviews. These ratings were then aggregated to form a linear regression model to predict the overall rating. This model not only predicts the overall rating but also uses the training weights from the layers of the model as the user's priority. Based on this, a new score matrix for recommendation is derived by calculating the similarity between the user and the item according to the criteria, and an item suitable for the user is proposed. The experiment was conducted by collecting the actual "TripAdvisor" dataset. For performance evaluation, the proposed method was compared with a general recommendation system based on singular value decomposition. The results of the experiments demonstrate the high performance of the proposed method.

정수장 후염소 공정제어를 위한 예측모델 개발 (Prediction Models to Control Pro-chlorination in Water Treatment Plant)

  • 신강욱;이경혁
    • 상하수도학회지
    • /
    • 제22권2호
    • /
    • pp.213-218
    • /
    • 2008
  • Prediction models for post-chlorination require complicated information of reaction time, chlorine dosage considering flow rate as well as environmental conditions such as turbidity, temperature and pH. In order to operate post-chlorination process effectively, the correlations between inlet and outlet of clear well were investigated to develop prediction models of chlorine dosages in post-chlorination process. Correlations of environmental conditions including turbidity and chlorine dosage were investigated to predict residual chlorine at the outlet of clear well. A linear regression model and autoregressive model were developed to apply for the post-chlorination which take place time delay due to detention in clear well tank. The results from autoregressive model show the correlationship of 0.915~0.995. Consequently, the autoregressive model developed in this study would be applicable for real time control for post chlorination process. As a result, the autoregressive model for post chlorination which take place time delay and have multi parameters to control system would contribute to water treatment automation system by applying the process control algorithm.