• 제목/요약/키워드: multi-level neural networks

검색결과 44건 처리시간 0.03초

Ensemble convolutional neural networks for automatic fusion recognition of multi-platform radar emitters

  • Zhou, Zhiwen;Huang, Gaoming;Wang, Xuebao
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.750-759
    • /
    • 2019
  • Presently, the extraction of hand-crafted features is still the dominant method in radar emitter recognition. To solve the complicated problems of selection and updation of empirical features, we present a novel automatic feature extraction structure based on deep learning. In particular, a convolutional neural network (CNN) is adopted to extract high-level abstract representations from the time-frequency images of emitter signals. Thus, the redundant process of designing discriminative features can be avoided. Furthermore, to address the performance degradation of a single platform, we propose the construction of an ensemble learning-based architecture for multi-platform fusion recognition. Experimental results indicate that the proposed algorithms are feasible and effective, and they outperform other typical feature extraction and fusion recognition methods in terms of accuracy. Moreover, the proposed structure could be extended to other prevalent ensemble learning alternatives.

Segmentation of Mammography Breast Images using Automatic Segmen Adversarial Network with Unet Neural Networks

  • Suriya Priyadharsini.M;J.G.R Sathiaseelan
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.151-160
    • /
    • 2023
  • Breast cancer is the most dangerous and deadly form of cancer. Initial detection of breast cancer can significantly improve treatment effectiveness. The second most common cancer among Indian women in rural areas. Early detection of symptoms and signs is the most important technique to effectively treat breast cancer, as it enhances the odds of receiving an earlier, more specialist care. As a result, it has the possible to significantly improve survival odds by delaying or entirely eliminating cancer. Mammography is a high-resolution radiography technique that is an important factor in avoiding and diagnosing cancer at an early stage. Automatic segmentation of the breast part using Mammography pictures can help reduce the area available for cancer search while also saving time and effort compared to manual segmentation. Autoencoder-like convolutional and deconvolutional neural networks (CN-DCNN) were utilised in previous studies to automatically segment the breast area in Mammography pictures. We present Automatic SegmenAN, a unique end-to-end adversarial neural network for the job of medical image segmentation, in this paper. Because image segmentation necessitates extensive, pixel-level labelling, a standard GAN's discriminator's single scalar real/fake output may be inefficient in providing steady and appropriate gradient feedback to the networks. Instead of utilising a fully convolutional neural network as the segmentor, we suggested a new adversarial critic network with a multi-scale L1 loss function to force the critic and segmentor to learn both global and local attributes that collect long- and short-range spatial relations among pixels. We demonstrate that an Automatic SegmenAN perspective is more up to date and reliable for segmentation tasks than the state-of-the-art U-net segmentation technique.

2층 다단 신경망회로 코어넷의 처리용량에 관한 연구 (The Capacity of Core-Net : Multi-Level 2-Layer Neural Networks)

  • 박종준
    • 한국정보처리학회논문지
    • /
    • 제6권8호
    • /
    • pp.2098-2115
    • /
    • 1999
  • 신경망 회로의 해석에서 아직 해결하지 못하는 부분이 은닉층(hidden layer)의 해석이다. 본 논문에서는 신경망 회로의 기본적인 구성회로로써 하나의 입력(p levels)과 하나의 출력(q levels)을 갖는 2-layer Core-Net를 정의하고, 이 Core-Net의 처리 가능 용량(the capacity)은 2차원 무게값 공간(weight space)을 나눌 수 있는 영역의 수로, {{{{ {a}_{p,q} = {{q}^{2}} over {2}p(p-1)- { q} over {2 } (3 { p}^{2 } -7p+2)+ { p}^{2 }-3p+2}}}}임을 수학적 귀납법으로 증명하였다. 이 Core-Net로 신경망 회로의 중간층 해석이 가능함을 시뮬레이션 예제를 통하여 보였다.

  • PDF

ARMA 모형선정을 위한 통합된 신경망 시스템의 설계 (Design of An Integrated Neural Network System for ARMA Model Identification)

  • 지원철;송성헌
    • Asia pacific journal of information systems
    • /
    • 제1권1호
    • /
    • pp.63-86
    • /
    • 1991
  • In this paper, our concern is the artificial neural network-based patten classification, when can resolve the difficulties in the Autoregressive Moving Average(ARMA) model identification problem To effectively classify a time series into an approriate ARMA model, we adopt the Multi-layered Backpropagation Network (MLBPN) as a pattern classifier, and Extended Sample Autocorrelation Function (ESACF) as a feature extractor. To improve the classification power of MLBPN's we suggest an integrated neural network system which consists of an AR Network and many small-sized MA Networks. The output of AR Network which will gives the MA order. A step-by-step training strategy is also suggested so that the learned MLBPN's can effectively ESACF patterns contaminated by the high level of noises. The experiment with the artificially generated test data and real world data showed the promising results. Our approach, combined with a statistical parameter estimation method, will provide a way to the automation of ARMA modeling.

  • PDF

불연속 암반내 터널굴착의 안정성 평가 및 암반분류를 위한 인공 신경회로망 개발 (Development of Artificial Neural Networks for Stability Assessment of Tunnel Excavation in Discontinuous Rock Masses and Rock Mass Classification)

  • 문현구;이철욱
    • 터널과지하공간
    • /
    • 제3권1호
    • /
    • pp.63-79
    • /
    • 1993
  • The design of tunnels in rock masses often demands more informations on geologic features and rock mass properties than acquired by usual field survey and laboratory testings. In practice, the situation that a perfect set of geological and mechanical input data is given to geomechanics design engineer is rare, while the engineers are asked to achieve a high level of reliability in their design products. This study presents an artificial neural network which is developed to resolve the difficulties encountered in conventional design techniques, particulary the problem of deteriorating the confidence of existing numerical techniques such as the finite element, boundary element and distinct element methods due to the incomplete adn vague input data. The neural network has inferring capabilities to identify the possible failure modes, support requirements and its timing for underground openings, from previous case histories. Use of the neural network has resulted in a better estimate of the correlation between systems of rock mass classifications such as the RMR and Q systems. A back propagation learning algorithm together with a multi-layer network structure is adopted to enhance the inferential accuracy and efficiency of the neural network. A series of experiments comparing the results of the neural network with the actual field observations are performed to demonstrate the abilities of the artificial neural network as a new tunnel design assistance system.

  • PDF

인공신경망을 이용한 청소년의 또래 애착 영향 요인 탐색 (Exploring Influence Factors for Peer Attachment in Korean Youth Based on Multi-Layer Perceptron Artificial Neural Networks)

  • 변해원
    • 한국융합학회논문지
    • /
    • 제8권10호
    • /
    • pp.209-214
    • /
    • 2017
  • 본 연구는 다층 퍼셉트론 인공신경망을 이용하여 우리나라 중학생의 또래애착에 영향을 미치는 요인을 탐색하였다. 2016년 지역아동센터의 아동패널조사에 참여한 중학교 3학년 재학생 419명(남 210명, 여 209명)을 분석하였다. 종속변수는 또래애착 여부로 정의하였고, 설명변수는 성, 학업 성적 만족도, 주관적 가구경제수준, 학교생활에 대한 부모-자녀대화 빈도, 주관적 건강상태, 우울증상, 자아존중감, 주관적 생활 만족도, 휴대전화의존도를 포함하였다. 또래애착의 예측 요인은 다층 퍼셉트론 인공신경망 알고리즘을 이용하여 분석하였다. 분석 결과, 우울증상, 성, 학교생활에 대한 부모-자녀 대화 수준, 주관적 가구 경제수준, 주관적 건강상태는 청소년의 또래애착과 관련이 높은 요인이었다. 청소년기의 성공적인 사회관계 형성을 위해서 또래 애착에 주요한 영향을 미치는 요인들을 고려한 상담 및 교육 프로그램의 개발이 요구된다.

독점 멀티 분류기의 심층 학습 모델을 사용한 약지도 시맨틱 분할 (Weakly-supervised Semantic Segmentation using Exclusive Multi-Classifier Deep Learning Model)

  • 최현준;강동중
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.227-233
    • /
    • 2019
  • 최근 딥러닝 기술의 발달과 함께 신경 네트워크는 컴퓨터 비전에서도 성공을 거두고 있다. 컨볼루션 신경망은 단순한 영상 분류 작업뿐만 아니라 객체 분할 및 검출 등 난이도가 높은 작업에서도 탁월한 성능을 보였다. 그러나 그러한 많은 심층 학습 모델은 지도학습에 기초하고 있으며, 이는 이미지 라벨보다 주석 라벨이 더 많이 필요하다. 특히 semantic segmentation 모델은 훈련을 위해 픽셀 수준의 주석을 필요로 하는데, 이는 매우 중요하다. 이 논문은 이러한 문제를 해결하기 위한 네트워크 훈련을 위해 영상 수준 라벨만 필요한 약지도 semantic segmentation 방법을 제안한다. 기존의 약지도학습 방법은 대상의 특정 영역만 탐지하는 데 한계가 있다. 반면에, 본 논문에서는 우리의 모델이 사물의 더 다른 부분을 인식하도 multi-classifier 심층 학습 아키텍처를 사용한다. 제안된 방법은 VOC 2012 검증 데이터 세트를 사용하여 평가한다.

A Facial Expression Recognition Method Using Two-Stream Convolutional Networks in Natural Scenes

  • Zhao, Lixin
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.399-410
    • /
    • 2021
  • Aiming at the problem that complex external variables in natural scenes have a greater impact on facial expression recognition results, a facial expression recognition method based on two-stream convolutional neural network is proposed. The model introduces exponentially enhanced shared input weights before each level of convolution input, and uses soft attention mechanism modules on the space-time features of the combination of static and dynamic streams. This enables the network to autonomously find areas that are more relevant to the expression category and pay more attention to these areas. Through these means, the information of irrelevant interference areas is suppressed. In order to solve the problem of poor local robustness caused by lighting and expression changes, this paper also performs lighting preprocessing with the lighting preprocessing chain algorithm to eliminate most of the lighting effects. Experimental results on AFEW6.0 and Multi-PIE datasets show that the recognition rates of this method are 95.05% and 61.40%, respectively, which are better than other comparison methods.

기계학습을 이용한 염화물 확산계수 예측모델 개발 (Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

이동 에이전트를 이용한 병렬 인공신경망 시뮬레이터 (The Parallel ANN(Artificial Neural Network) Simulator using Mobile Agent)

  • 조용만;강태원
    • 정보처리학회논문지B
    • /
    • 제13B권6호
    • /
    • pp.615-624
    • /
    • 2006
  • 이 논문은 이동 에이전트 시스템에 기반을 둔 가상의 병렬분산 컴퓨팅 환경에서 병렬로 수행되는 다층 인공신경망 시뮬레이터를 구현하는 것을 목적으로 한다. 다층 신경망은 학습세션, 학습데이터, 계층, 노드, 가중치 수준에서 병렬화가 이루어진다. 이 논문에서는 네트워크의 통신량이 상대적으로 적은 학습세션 및 학습데이터 수준의 병렬화가 가능한 신경망 시뮬레이터를 개발하고 평가하였다. 평가결과, 학습세션 병렬화와 학습데이터 병렬화 성능분석에서 약 3.3배의 학습 수행 성능 향상을 확인할 수 있었다. 가상의 병렬 컴퓨터에서 신경망을 병렬로 구현하여 기존의 전용병렬컴퓨터에서 수행한 신경망의 병렬처리와 비슷한 성능을 발휘한다는 점에서 이 논문의 의의가 크다고 할 수 있다. 따라서 가상의 병렬 컴퓨터를 이용하여 신경망을 개발하는데 있어서, 비교적 시간이 많이 소요되는 학습시간을 줄임으로서 신경망 개발에 상당한 도움을 줄 수 있다고 본다.