• Title/Summary/Keyword: multi-level neural networks

Search Result 44, Processing Time 0.029 seconds

Potential Anomaly Separation and Archeological Site Localization Using Genetically Trained Multi-level Cellular Neural Networks

  • Bilgili, Erdem;Goknar, I. Cem;Albora, Ali Muhittin;Ucan, Osman Nuri
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.294-303
    • /
    • 2005
  • In this paper, a supervised algorithm for the evaluation of geophysical sites using a multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. ML-CNN is a stochastic image processing technique based on template optimization using neighborhood relationships of the pixels. The separation/enhancement and border detection performance of the proposed method is evaluated by various interesting real applications. A genetic algorithm is used in the optimization of CNN templates. The first application is concerned with the separation of potential field data of the Dumluca chromite region, which is one of the rich reserves of Turkey; in this context, the classical approach to the gravity anomaly separation method is one of the main problems in geophysics. The other application is the border detection of archeological ruins of the Hittite Empire in Turkey. The Hittite civilization sites located at the Sivas-Altinyayla region of Turkey are among the most important archeological sites in history, one reason among others being that written documentation was first produced by this civilization.

  • PDF

POI Recommendation Method Based on Multi-Source Information Fusion Using Deep Learning in Location-Based Social Networks

  • Sun, Liqiang
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.352-368
    • /
    • 2021
  • Sign-in point of interest (POI) are extremely sparse in location-based social networks, hindering recommendation systems from capturing users' deep-level preferences. To solve this problem, we propose a content-aware POI recommendation algorithm based on a convolutional neural network. First, using convolutional neural networks to process comment text information, we model location POI and user latent factors. Subsequently, the objective function is constructed by fusing users' geographical information and obtaining the emotional category information. In addition, the objective function comprises matrix decomposition and maximisation of the probability objective function. Finally, we solve the objective function efficiently. The prediction rate and F1 value on the Instagram-NewYork dataset are 78.32% and 76.37%, respectively, and those on the Instagram-Chicago dataset are 85.16% and 83.29%, respectively. Comparative experiments show that the proposed method can obtain a higher precision rate than several other newer recommended methods.

Recurrent Neural Network with Multiple Hidden Layers for Water Level Forecasting near UNESCO World Heritage Site "Hahoe Village"

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.14 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • Among many UNESCO world heritage sites in Korea, "Historic Village: Hahoe" is adjacent to Nakdong River and it is imperative to monitor the water level near the village in a bid to forecast floods and prevent disasters resulting from floods.. In this paper, we propose a recurrent neural network with multiple hidden layers to predict the water level near the village. For training purposes on the proposed model, we adopt the sixth-order error function to improve learning for rare events as well as to prevent overspecialization to abundant events. Multiple hidden layers with recurrent and crosstalk links are helpful in acquiring the time dynamics of the relationship between rainfalls and water levels. In addition, we chose hidden nodes with linear rectifier activation functions for training on multiple hidden layers. Through simulations, we verified that the proposed model precisely predicts the water level with high peaks during the rainy season and attains better performance than the conventional multi-layer perceptron.

Genetically Optimized Fuzzy Polynomial Neural Networks and Its Application to Multi-variable Software Process (유전론적 최적 퍼지 다항식 뉴럴네트워크와 다변수 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.152-154
    • /
    • 2005
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed genetic algorithms-based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

  • PDF

A Study on the Multi-Level Artificial Neural Networks Using Genetic Algorithm for Preliminary Structural Design (예비 구조설계를 위한 유전알고리즘을 이용한 다단계 인공신경망에 관한 연구)

  • Choi, Byoung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.443-452
    • /
    • 2004
  • Recently, the Artificial Neural Network(ANN) which can organize complex non-linear problems by effectively applying the parallel computational model that is similar to the human brain, was adopted in the wide department of technology and resulted in many successful applications. In this study, a more appropriate formal method is suggested for the preliminary structural design stage controlled merely by the designer's experience and intuition. To do so, this study proposes a multi-level ANN according to the general progressive structural design procedure, using Back-Propagation Algorithm (BP) and Genetic Algorithm (GA) for the ANN learning. The preliminary structural design of cable-stayed bridges was applied to illustrate the applicability of the study formulated as stated above, and the results of two different learning methods were compared.

Study of Neuron Operation using Controlled Chaotic Instabilities in Brillouin-Active Fiber Based Neural Networks

  • Kim, Yong-K.;Huh, Do-Geun;Kim, Kwan-Woong;Yu, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.546-549
    • /
    • 2006
  • In this paper the neuron operation based on Brillouin-active fiber in optical fiber is described. The inherent optical feedback by the backscattered stokes wave in optical fiber leads to instabilities in the form of optical chaos. Controlling of chaos induced transient instability in Brillouin-active fiber is implemented with Kerr nonlinearity having a non-instantaneous response in network systems. The controlling chaotic instabilities can lead to multistable periodic states; create optical logic 'on' or high level '1' or 'off', or low level '0'. It is theoretically possible to apply the multi-stability regimes as an optical memory device for encoding and decoding series and complex data transmission in optical systems.

Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons (퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크)

  • 박호성;이동윤;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.

MARGIN-BASED GENERALIZATION FOR CLASSIFICATIONS WITH INPUT NOISE

  • Choe, Hi Jun;Koh, Hayeong;Lee, Jimin
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.217-233
    • /
    • 2022
  • Although machine learning shows state-of-the-art performance in a variety of fields, it is short a theoretical understanding of how machine learning works. Recently, theoretical approaches are actively being studied, and there are results for one of them, margin and its distribution. In this paper, especially we focused on the role of margin in the perturbations of inputs and parameters. We show a generalization bound for two cases, a linear model for binary classification and neural networks for multi-classification, when the inputs have normal distributed random noises. The additional generalization term caused by random noises is related to margin and exponentially inversely proportional to the noise level for binary classification. And in neural networks, the additional generalization term depends on (input dimension) × (norms of input and weights). For these results, we used the PAC-Bayesian framework. This paper is considering random noises and margin together, and it will be helpful to a better understanding of model sensitivity and the construction of robust generalization.

Modeling and Identification of Paper Plants based on PRS (PRS를 이용한 제지공정의 인식 및 모델링에 관한 연구)

  • 오창훈;여영구;강홍
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.11a
    • /
    • pp.221-232
    • /
    • 2004
  • Paper process is complex and multivariable system. Identification of a paper process model is imperative for the development of predictive control method. 13-level Pseudo-Random Sequence Signals were used to identify the plant model in which the neural network model was considered model as a real paper process. Results of simulations for identification using 13-level PRS signals and Prediction Error Method are compared with plant operation data. From the comparison, we can see that the dynamics of the model show good agreement with those of real plant.

  • PDF

Corporate Credit Rating using Partitioned Neural Network and Case- Based Reasoning (신경망 분리모형과 사례기반추론을 이용한 기업 신용 평가)

  • Kim, David;Han, In-Goo;Min, Sung-Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.2
    • /
    • pp.151-168
    • /
    • 2007
  • The corporate credit rating represents an assessment of the relative level of risk associated with the timely payments required by the debt obligation. In this study, the corporate credit rating model employs artificial intelligence methods including Neural Network (NN) and Case-Based Reasoning (CBR). At first we suggest three classification models, as partitioned neural networks, all of which convert multi-group classification problems into two group classification ones: Ordinal Pairwise Partitioning (OPP) model, binary classification model and simple classification model. The experimental results show that the partitioned NN outperformed the conventional NN. In addition, we put to use CBR that is widely used recently as a problem-solving and learning tool both in academic and business areas. With an advantage of the easiness in model design compared to a NN model, the CBR model proves itself to have good classification capability through the highest hit ratio in the corporate credit rating.

  • PDF