• Title/Summary/Keyword: multi-legged walking robot

Search Result 21, Processing Time 0.019 seconds

A Workspace Analysis Method of Multi-Legged Walking Robot in the Velocity Domain (다족 보행로봇의 속도작업공간 해석)

  • 이지홍;전봉환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.477-483
    • /
    • 2002
  • This paper deals with a workspace analysis of multi-legged walking robots in velocity domain(velocity workspace analysis). Noting that when robots are holding the same object in multiple cooperating robotic arm system the kinematic structure of the system is basically the same with that of a multi-legged walking robot standing on the ground, we invented a way ot applying the technique for multiple arm system to multi-legged walking robot. An important definition of reaction velocity is made and the bounds of velocities achievable by the moving body with multi-legs is derived from the given bounds on the capabilities of actuators of each legs through Jacobian matrix for given robot configuration. After some assumption of hard-foot-condition is adopted as a contact model between feet of robot and the ground, visualization process for the velocity workspace is proposed. Also, a series of application examples will be presented including continuous walking gaits as well as several different stationary posture of legged walking robots, which validate the usefulness of the proposed technique.

Force Manipulability Analysis of Multi-Legged Walking Robot (다족 보행로봇의 동적 조작성 해석)

  • 조복기;이지홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.

Multi-legged Walking Robot Using Complex Linkage Structure (복합 링크기구를 이용한 다족 보행로봇)

  • Im, Sang-Hyun;Lee, Dong Hoon;Kang, Hyun Chang;Kim, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.74-79
    • /
    • 2021
  • Generally, multi-legged walking robots have excellent mobility in rough and uneven terrain, and they are deployed for the safety of rescuers in various disaster environments. However, as each leg is driven by a number of actuators, it leads to a complicated structure and high power consumption; therefore, it is difficult to put them into practical use. In this article, a new concept is proposed of a walking robot whose legs are driven by a complex linkage structure to overcome the deficiencies of conventional multi-legged walking robots. A double crank-rocker mechanism is proposed, making it possible for one DC motor to actuate the left and right movements of two neighboring thighs of the multi-legged walking robot. Each leg can also move up and down through an improved cam structure. Finally, each mechanism is connected by spur and bevel gears, so that only two DC motors can drive all legs of the walking robot. The feasibility of the designed complex linkage mechanism was verified using the UG NX program. It was confirmed through actual production that the proposed multi-legged walking robot performs the desired motion.

Design of Leg Length for a Legged Walking Robot Based on Theo Jansen Using PSO (PSO를 이용한 테오얀센 기반의 보행로봇 다리설계)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.660-666
    • /
    • 2011
  • In this paper, we proposed a Particle Swarm Optimization(PSO) to search the optimal link lengths for legged walking robot. In order to apply the PSO algorithm for the proposed, its walking robot kinematic analysis is needed. A crab robot based on four-bar linkage mechanism and Jansen mechanism is implemented in H/W. For the performance index of PSO, the stride length of the legged walking robot is defined, based on the propose kinematic analysis. Comparative simulation results present to illustrate the viability and effectiveness of the proposed method.

A Study on Humanoid Robot Control Method Using Zigbee Wireless Servo Motor with Sensor Network

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.235-243
    • /
    • 2012
  • In this study, we developed two legged multi-joint robot by using wireless servo motor that was applied by wireless sensor network technology, which is widely used recently, and performed an experiment of walking method of two legged multi-joint robot. We constructed the star network with servo motors which were used at each joint of two-legged robot. And we designed the robot for operation by transmission of joint control signal from main control system or by transmission of the status of each joint to the main control system, so it operates with continuously checking the status of joints at same time. We developed the humanoid robot by using wireless digital servo motor which is different from existing servo motor control system, and controlled it by transmitting the information of angles and speeds of robot joints to the motor(node) as a feedback through main control system after connecting power and setting up the IDs to each joint. We solved noisy problem generated from wire and wire length to connection point of the control device by construction of the wireless network instead of using existing control method of wiring, and also solved problem of poor real time response to gait motion by controlling the position with continuous transmission of control signals to each joint. And we found that the effective control of robot is able by performing the simulation on walking motion in advance with the developed control algorithm which was downloaded into installed memory. Also we performed the stable walking with two-legged robot by attaching pressure sensor to robot sole. And we examined the robot gait operated by application of calculated algorithm on robot movement to each joint. In this study, we studied the method of controlling robot gait motion by using wireless servo motors and measured the torque applied to each joint, and found that the developed wireless servo motor by ZigBee sensor network offers easier control of two legged robot gait and better circuit configuration of it than the existing wired control system could do.

Mobility and Agility of Multi-legged Walking Robot System (다족 보행 로봇 시스템의 이동성 및 민첩성)

  • Shim, Hyung-Won;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.

Analysis on Effective Walking Pattern for Multi-Legged Robots (다족 로봇을 위한 효과적인 보행 패턴 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.622-628
    • /
    • 2009
  • A proper walking pattern is to be assigned for a walk of multi-legged robots. For the purpose of identifying a good walking pattern for multi-legged robots, this paper consider a simple model of quadruped robotic walking and analyze its walking balance based on the centroid of foot polygons formed in every step. A performance index to estimate the walking balance is also proposed. Simulation studies show that the centroid trajectory of foot polygons and the walking balance in a common quadruped walking are different according to the walking pattern employed. Based on the walking balance index and a bio-mimetic aspect, a useful walking pattern for quadruped robots is finally addressed.

Analysis of dynamic manipulability for four-legged walking robot (4족 보행 로봇의 동적 조작도 해석)

  • 이지홍;전봉환;조복기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2721-2724
    • /
    • 2003
  • This paper deals with a manipulability analysis of multi-legged walking robots in acceleration domain, that is the dynamic manipulability analysis of walking robot. Noting that the kinematic structure of the walking robot is basically the same with that of the multiple serial robot system holding one object, the analysis method for cooperating robot is converted to that of walking robot. With the proposed method, the bound of achievable acceleration of the moving body is easily derived from the given bounds on the capabilities of Joint torques. Several walking robot examples are analyzed with proposed method under the assumption of hard contact, and presented in the paper to validate the method.

  • PDF

Design of Walking Robot Based on Jansen Mechanism (얀센 메커니즘 기반의 보행로봇 설계)

  • Ko, Jiwoo;Jo, Wonbin
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.429-433
    • /
    • 2016
  • Moving robot is divided 2 kinds; one is the robot using wheels and the other has leg structure. On plat terrain, the former is better than the latter because it has fast speed and simple method to control. But on non-plat terrain, the situation is reversed. The robot using legs has slow speed but it has advantage to adjust various environments. This robot is expected to contribute to human in many fields such as rescue and exploration and so on. So walking robot is worth enough to research. In this paper, we present the design of 4-legged walking robot based on Jansen mechanism using m-Sketch and Edison Designer.

  • PDF