• 제목/요약/키워드: multi-legged walking robot

검색결과 21건 처리시간 0.019초

다족 보행로봇의 속도작업공간 해석 (A Workspace Analysis Method of Multi-Legged Walking Robot in the Velocity Domain)

  • 이지홍;전봉환
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.477-483
    • /
    • 2002
  • This paper deals with a workspace analysis of multi-legged walking robots in velocity domain(velocity workspace analysis). Noting that when robots are holding the same object in multiple cooperating robotic arm system the kinematic structure of the system is basically the same with that of a multi-legged walking robot standing on the ground, we invented a way ot applying the technique for multiple arm system to multi-legged walking robot. An important definition of reaction velocity is made and the bounds of velocities achievable by the moving body with multi-legs is derived from the given bounds on the capabilities of actuators of each legs through Jacobian matrix for given robot configuration. After some assumption of hard-foot-condition is adopted as a contact model between feet of robot and the ground, visualization process for the velocity workspace is proposed. Also, a series of application examples will be presented including continuous walking gaits as well as several different stationary posture of legged walking robots, which validate the usefulness of the proposed technique.

다족 보행로봇의 동적 조작성 해석 (Force Manipulability Analysis of Multi-Legged Walking Robot)

  • 조복기;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.

복합 링크기구를 이용한 다족 보행로봇 (Multi-legged Walking Robot Using Complex Linkage Structure)

  • 임상현;이동훈;강현창;김상현
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.74-79
    • /
    • 2021
  • Generally, multi-legged walking robots have excellent mobility in rough and uneven terrain, and they are deployed for the safety of rescuers in various disaster environments. However, as each leg is driven by a number of actuators, it leads to a complicated structure and high power consumption; therefore, it is difficult to put them into practical use. In this article, a new concept is proposed of a walking robot whose legs are driven by a complex linkage structure to overcome the deficiencies of conventional multi-legged walking robots. A double crank-rocker mechanism is proposed, making it possible for one DC motor to actuate the left and right movements of two neighboring thighs of the multi-legged walking robot. Each leg can also move up and down through an improved cam structure. Finally, each mechanism is connected by spur and bevel gears, so that only two DC motors can drive all legs of the walking robot. The feasibility of the designed complex linkage mechanism was verified using the UG NX program. It was confirmed through actual production that the proposed multi-legged walking robot performs the desired motion.

PSO를 이용한 테오얀센 기반의 보행로봇 다리설계 (Design of Leg Length for a Legged Walking Robot Based on Theo Jansen Using PSO)

  • 김선욱;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.660-666
    • /
    • 2011
  • 본 논문에서는 절 기구(bar linkage)형 다관절 보행로봇(multi-legged walking robot)의 최적다리 길이선정을 위하여 입자군집 최적화(PSO: Particle Swarm Optimization) 기법을 사용하였다. PSO 알고리즘을 적용하기 위해서 제안한 보행로봇의 기구학적인 해석이 필요하다. 게 로봇은 4절 링크 이론(four-bar linkage)과 얀센 메커니즘(Jansen mechanism)을 기반으로 설계되었다. 이러한 기구학적인 해석을 바탕으로 로봇의 보행보폭을 정의한다. 그리고 PSO의 학습 및 군집 특성을 이용하여 최대의 보행보폭을 가지는 10개(EA)의 링크(link)길이를 구한다. 시뮬레이션을 통해 각 링크의 위치와 다리 끝단의 보행보폭을 확인할 수 있다. 결과로서, PSO기법이 절 기구형 다관절 보행로봇의 최적다리 길이 선정에 효율적임을 보여 준다.

A Study on Humanoid Robot Control Method Using Zigbee Wireless Servo Motor with Sensor Network

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • 전기전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.235-243
    • /
    • 2012
  • In this study, we developed two legged multi-joint robot by using wireless servo motor that was applied by wireless sensor network technology, which is widely used recently, and performed an experiment of walking method of two legged multi-joint robot. We constructed the star network with servo motors which were used at each joint of two-legged robot. And we designed the robot for operation by transmission of joint control signal from main control system or by transmission of the status of each joint to the main control system, so it operates with continuously checking the status of joints at same time. We developed the humanoid robot by using wireless digital servo motor which is different from existing servo motor control system, and controlled it by transmitting the information of angles and speeds of robot joints to the motor(node) as a feedback through main control system after connecting power and setting up the IDs to each joint. We solved noisy problem generated from wire and wire length to connection point of the control device by construction of the wireless network instead of using existing control method of wiring, and also solved problem of poor real time response to gait motion by controlling the position with continuous transmission of control signals to each joint. And we found that the effective control of robot is able by performing the simulation on walking motion in advance with the developed control algorithm which was downloaded into installed memory. Also we performed the stable walking with two-legged robot by attaching pressure sensor to robot sole. And we examined the robot gait operated by application of calculated algorithm on robot movement to each joint. In this study, we studied the method of controlling robot gait motion by using wireless servo motors and measured the torque applied to each joint, and found that the developed wireless servo motor by ZigBee sensor network offers easier control of two legged robot gait and better circuit configuration of it than the existing wired control system could do.

다족 보행 로봇 시스템의 이동성 및 민첩성 (Mobility and Agility of Multi-legged Walking Robot System)

  • 심형원;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.

다족 로봇을 위한 효과적인 보행 패턴 분석 (Analysis on Effective Walking Pattern for Multi-Legged Robots)

  • 김병호
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.622-628
    • /
    • 2009
  • 다족로봇이 보행하기 위해서는 기본적으로 어떤 보행 패턴의 설정이 필요하다. 이러한 관점에서 어떤 보행 패턴이 효과적인 다족 보행을 가능하게 할 것인지를 분석하기 위하여 본 논문은 네 개의 다리를 이용하는 4족 보행 로봇 모델을 고려하며, 보행 순간마다 지지판에 의해 형성되는 지시다각형의 중심경로를 기반으로 보행 밸런스를 분석한다. 또한, 다족 로봇의 보행 밸런스를 평가하기 위한 성능지수를 제안한다. 시뮬레이션을 통하여, 4족 로봇의 보행에서 지지다각형의 중심 경로와 보행 밸런스는 사용된 보행 패턴에 따라 다르다는 사실을 보인다. 결과적으로, 보행 밸런스 지수와 생체모방 관점으로부터 4족 로봇의 보행을 위하여 유용한 보행 패턴을 제시한다.

4족 보행 로봇의 동적 조작도 해석 (Analysis of dynamic manipulability for four-legged walking robot)

  • 이지홍;전봉환;조복기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2721-2724
    • /
    • 2003
  • This paper deals with a manipulability analysis of multi-legged walking robots in acceleration domain, that is the dynamic manipulability analysis of walking robot. Noting that the kinematic structure of the walking robot is basically the same with that of the multiple serial robot system holding one object, the analysis method for cooperating robot is converted to that of walking robot. With the proposed method, the bound of achievable acceleration of the moving body is easily derived from the given bounds on the capabilities of Joint torques. Several walking robot examples are analyzed with proposed method under the assumption of hard contact, and presented in the paper to validate the method.

  • PDF

얀센 메커니즘 기반의 보행로봇 설계 (Design of Walking Robot Based on Jansen Mechanism)

  • 고지우;조원빈
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.429-433
    • /
    • 2016
  • Moving robot is divided 2 kinds; one is the robot using wheels and the other has leg structure. On plat terrain, the former is better than the latter because it has fast speed and simple method to control. But on non-plat terrain, the situation is reversed. The robot using legs has slow speed but it has advantage to adjust various environments. This robot is expected to contribute to human in many fields such as rescue and exploration and so on. So walking robot is worth enough to research. In this paper, we present the design of 4-legged walking robot based on Jansen mechanism using m-Sketch and Edison Designer.

  • PDF

다각 보행 로보트의 제어 방법에 관한 연구 (A study of the control method for multi-legged walking robots)

  • 박성혁;황승구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.69-73
    • /
    • 1987
  • In this paper the continuous static stable gait, kinematics and the basic control algorithm of the quadruped walking robot have been discussed. The control method described in this paper will be extended for the walking robot to walk on an uneven terrain.

  • PDF