• 제목/요약/키워드: multi-legged robot

검색결과 31건 처리시간 0.031초

다족 보행로봇의 속도작업공간 해석 (A Workspace Analysis Method of Multi-Legged Walking Robot in the Velocity Domain)

  • 이지홍;전봉환
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.477-483
    • /
    • 2002
  • This paper deals with a workspace analysis of multi-legged walking robots in velocity domain(velocity workspace analysis). Noting that when robots are holding the same object in multiple cooperating robotic arm system the kinematic structure of the system is basically the same with that of a multi-legged walking robot standing on the ground, we invented a way ot applying the technique for multiple arm system to multi-legged walking robot. An important definition of reaction velocity is made and the bounds of velocities achievable by the moving body with multi-legs is derived from the given bounds on the capabilities of actuators of each legs through Jacobian matrix for given robot configuration. After some assumption of hard-foot-condition is adopted as a contact model between feet of robot and the ground, visualization process for the velocity workspace is proposed. Also, a series of application examples will be presented including continuous walking gaits as well as several different stationary posture of legged walking robots, which validate the usefulness of the proposed technique.

다족 보행로봇의 동적 조작성 해석 (Force Manipulability Analysis of Multi-Legged Walking Robot)

  • 조복기;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.

복합 링크기구를 이용한 다족 보행로봇 (Multi-legged Walking Robot Using Complex Linkage Structure)

  • 임상현;이동훈;강현창;김상현
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.74-79
    • /
    • 2021
  • Generally, multi-legged walking robots have excellent mobility in rough and uneven terrain, and they are deployed for the safety of rescuers in various disaster environments. However, as each leg is driven by a number of actuators, it leads to a complicated structure and high power consumption; therefore, it is difficult to put them into practical use. In this article, a new concept is proposed of a walking robot whose legs are driven by a complex linkage structure to overcome the deficiencies of conventional multi-legged walking robots. A double crank-rocker mechanism is proposed, making it possible for one DC motor to actuate the left and right movements of two neighboring thighs of the multi-legged walking robot. Each leg can also move up and down through an improved cam structure. Finally, each mechanism is connected by spur and bevel gears, so that only two DC motors can drive all legs of the walking robot. The feasibility of the designed complex linkage mechanism was verified using the UG NX program. It was confirmed through actual production that the proposed multi-legged walking robot performs the desired motion.

A Study on Humanoid Robot Control Method Using Zigbee Wireless Servo Motor with Sensor Network

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • 전기전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.235-243
    • /
    • 2012
  • In this study, we developed two legged multi-joint robot by using wireless servo motor that was applied by wireless sensor network technology, which is widely used recently, and performed an experiment of walking method of two legged multi-joint robot. We constructed the star network with servo motors which were used at each joint of two-legged robot. And we designed the robot for operation by transmission of joint control signal from main control system or by transmission of the status of each joint to the main control system, so it operates with continuously checking the status of joints at same time. We developed the humanoid robot by using wireless digital servo motor which is different from existing servo motor control system, and controlled it by transmitting the information of angles and speeds of robot joints to the motor(node) as a feedback through main control system after connecting power and setting up the IDs to each joint. We solved noisy problem generated from wire and wire length to connection point of the control device by construction of the wireless network instead of using existing control method of wiring, and also solved problem of poor real time response to gait motion by controlling the position with continuous transmission of control signals to each joint. And we found that the effective control of robot is able by performing the simulation on walking motion in advance with the developed control algorithm which was downloaded into installed memory. Also we performed the stable walking with two-legged robot by attaching pressure sensor to robot sole. And we examined the robot gait operated by application of calculated algorithm on robot movement to each joint. In this study, we studied the method of controlling robot gait motion by using wireless servo motors and measured the torque applied to each joint, and found that the developed wireless servo motor by ZigBee sensor network offers easier control of two legged robot gait and better circuit configuration of it than the existing wired control system could do.

다족 보행 로봇 시스템의 이동성 및 민첩성 (Mobility and Agility of Multi-legged Walking Robot System)

  • 심형원;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.

PSO를 이용한 테오얀센 기반의 보행로봇 다리설계 (Design of Leg Length for a Legged Walking Robot Based on Theo Jansen Using PSO)

  • 김선욱;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.660-666
    • /
    • 2011
  • 본 논문에서는 절 기구(bar linkage)형 다관절 보행로봇(multi-legged walking robot)의 최적다리 길이선정을 위하여 입자군집 최적화(PSO: Particle Swarm Optimization) 기법을 사용하였다. PSO 알고리즘을 적용하기 위해서 제안한 보행로봇의 기구학적인 해석이 필요하다. 게 로봇은 4절 링크 이론(four-bar linkage)과 얀센 메커니즘(Jansen mechanism)을 기반으로 설계되었다. 이러한 기구학적인 해석을 바탕으로 로봇의 보행보폭을 정의한다. 그리고 PSO의 학습 및 군집 특성을 이용하여 최대의 보행보폭을 가지는 10개(EA)의 링크(link)길이를 구한다. 시뮬레이션을 통해 각 링크의 위치와 다리 끝단의 보행보폭을 확인할 수 있다. 결과로서, PSO기법이 절 기구형 다관절 보행로봇의 최적다리 길이 선정에 효율적임을 보여 준다.

4절 링크 이론과 얀센 메커니즘을 기반으로 한 보행 로봇의 운동학 해석 (Kinematic Analysis of a Legged Walking Robot Based on Four-bar Linkage and Jansen Mechanism)

  • 김선욱;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.159-164
    • /
    • 2011
  • 본 연구에서는 4절 링크 이론(four-bar linkage mechanism)과 얀센 메커니즘(Jansen mechanism)을 기반으로 다관절 보행 로봇(multi-legged walking robot)인 게(crab) 로봇을 제작하고, 게 로봇의 움직임에 대하여 기구학적인 해석을 제시한다. 제작된 게 로봇은 영상 획득을 위하여 카메라를 장착하였고, 장애물 회피를 위하여 3조의 초음파 센서를 가지고 있다. 또한 RF통신으로 외부에 영상 정보를 전달하며, Blue-tooth 통신 모듈을 장착하여 외부로부터 부여된 임무를 수행할 수 있다. 게 로봇의 설계와 제작을 하기 위해서 필요로 하는, 로봇 다리의 움직임을 알기 위해서는 관절 변수와 다리 끝단의 위치 및 자세와의 관계를 얻어야 한다. 따라서, 제안된 기구학적 해석은 로봇의 설계와 제작에 있어서 많은 도움을 주며 중요한 과정이다.

휠-다리 로봇의 장애물극복 모션 계획 및 제어 방법 (Motion Planning and Control of Wheel-legged Robot for Obstacle Crossing)

  • 정순규;원문철
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.500-507
    • /
    • 2022
  • In this study, a motion planning method based on the integer representation of contact status between wheels and the ground is proposed for planning swing motion of a 6×6 wheel-legged robot to cross large obstacles and gaps. Wheel-legged robots can drive on a flat road by wheels and overcome large obstacles by legs. Autonomously crossing large obstacles requires the robot to perform complex motion planning of multi-contacts and wheel-rolling at the same time. The lift-off and touch-down status of wheels and the trajectories of legs should be carefully planned to avoid collision between the robot body and the obstacle. To address this issue, we propose a planning method for swing motion of robot legs. It combines an integer representation of discrete contact status and a trajectory optimization based on the direct collocation method, which results in a mixed-integer nonlinear programming (MINLP) problem. The planned motion is used to control the joint angles of the articulated legs. The proposed method is verified by the MuJoCo simulation and shows that over 95% and 83% success rate when the height of vertical obstacles and the length of gaps are equal to or less than 1.68 times of the wheel radius and 1.44 times of the wheel diameter, respectively.

다족형 생체모방 수중 로봇(CALEB10)의 Pitch 유영 제어 (Pitch Directional Swimming Control of Multi-Legged Biomimetic Underwater Robot (CALEB10))

  • 이한솔;이지홍
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.228-238
    • /
    • 2017
  • The CALEB10 is a multi-legged biomimetic underwater robot. In the last research, we developed a swimming pattern named ESPG (Extended Swimming Pattern Generator) by observing diving beetle's swimming actions and experimented with a positive buoyancy state in which CALEB10 floats on the water. In this paper, however, we have experimented with CALEB10 in a neutral buoyancy state where it is completely immersed in water for pitch motion control experiment. And we found that CALEB10 was unstably swimming in the pitch direction in the neutral buoyancy state and analyzed that the reason was due to the weight proportion of the legs. In this paper, we propose a pitch motion control method to mimic the pitch motion of diving beetles and to solve the problem of CALEB10 unstably swimming in the pitch direction. To control the pitch motion, we use the method of controlling additional joints while swimming with the ESPG. The method of obtaining propulsive force by the motion of the leg has a problem of giving propulsive force in the reverse direction when swimming in the surge direction, but this new control method has an advantage that a propulsive moment generated by a swimming action only on a target pitch value. To demonstrate validity this new control method, we designed a dynamics-based simulator environment. And the control performance to the target pitch value was verified through simulation and underwater experiments.

다족형 생체모방 수중 로봇(CALEB10)의 각 자유도를 분리한 자세 제어 (Posture Control through Decomposed Control for Multi-Legged Biomimetic Underwater Robot (CALEB10))

  • 이한솔;이지홍
    • 로봇학회논문지
    • /
    • 제13권1호
    • /
    • pp.63-71
    • /
    • 2018
  • This paper describes a study on posture control of the multi-legged biomimetic underwater robot (CALEB10). Because the underwater environment has a feature that all degrees of freedom are coupled to each other, we designed the posture control algorithm by separating each degree of freedom. Not only should the research on posture control of underwater robots be a precedent study for position control, but it is also necessary to compensate disturbance in each direction. In the research on the yaw directional posture control, we made the drag force generated by the stroke of the left leg and the right leg occur asymmetrically, in order that a rotational moment is generated along the yaw direction. In the composite swimming controller in which the controllers in each direction are combined, we designed the algorithm to determine the control weights in each direction according to the error angle along the yaw direction. The performance of the proposed posture control method is verified by a dynamical simulator and underwater experiments.