• Title/Summary/Keyword: multi-lane loading factor

Search Result 3, Processing Time 0.025 seconds

Evaluation of multi-lane transverse reduction factor under random vehicle load

  • Yang, Xiaoyan;Gong, Jinxin;Xu, Bohan;Zhu, Jichao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.725-736
    • /
    • 2017
  • This paper presents the two-, three-, and four-lane transverse reduction factor based on FEA method, probability theory, and the recently actual traffic flow data. A total of 72 composite girder bridges with various spans, number of lanes, loading mode, and bridge type are analyzed with time-varying static load FEA method by ANSYS, and the probability models of vehicle load effects at arbitrary-time point are developed. Based on these probability models, in accordance to the principle of the same exceeding probability, the multi-lane transverse reduction factor of these composite girder bridges and the relationship between the multi-lane transverse reduction factor and the span of bridge are determined. Finally, the multi-lane transverse reduction factor obtained is compared with those from AASHTO LRFD, BS5400, JTG D60 or Eurocode. The results show that the vehicle load effect at arbitrary-time point follows lognormal distribution. The two-, three-, and four-lane transverse reduction factors calculated by using FEA method and probability respectively range between 0.781 and 1.027, 0.616 and 0.795, 0.468 and 0.645. Furthermore, a correlation between the FEA and AASHTO LRFD, BS5400, JTG D60 or Eurocode transverse reduction factors is made for composite girder bridges. For the two-, three-, and four-lane bridge cases, the Eurocode code underestimated the FEA transverse reduction factors by 27%, 25% and 13%, respectively. This underestimation is more pronounced in short-span bridges. The AASHTO LRFD, BS5400 and JTG D60 codes overestimated the FEA transverse reduction factors. The FEA results highlight the importance of considering span length in determining the multi-lane transverse reduction factors when designing two-lane or more composite girder bridges. This paper will assist bridge engineers in quantifying the adjustment factors used in analyzing and designing multi-lane composite girder bridges.

Determination of Multi-Lane Loading Factors for Vehicular Load of Bridges using Weigh-In-Motion Data (고속축중계 자료를 이용한 차량하중 다차로재하계수 결정)

  • Hwang, Eui-Seung;Nguyen, Thi Hang
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.123-132
    • /
    • 2011
  • The purpose of this study is to calculate and propose rational multi-lane loading factors for bridge design considering the probability of simultaneous truck passing in adjacent lanes and real truck weights. The probability of simultaneous truck passing is calculated by analyzing video image taken at various locations in highways and national roads. Weigh-In-Motion system data at two locations are used, which is combined with the probability of multiple presence to calculate the multi-lane loading factors for typical 2 lane and 5 lane bridges. Statistical properties of multi-lane loading factors are also calculated assuming that locations for video images and WIM data represent the overall traffic condition in the country. Results are compared with various design codes in the world and they show that the values are between the current Korea Bridge Design Code and AASHTO LRFD specification or Eurocode and are similar to Canadian Code.

Impact Effects of Multi-Girder Steel Bridges Under Various Traffic Conditions (차량하중에 의한 다주형 강판형교의 충격계수 변화에 관한 연구)

  • 김상효;허진영
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.233-240
    • /
    • 1997
  • The study presents the linear dynamic analysis of multi-girder steel bridges under vehicular movement to examine the performance characteristics due to the various structural and loading conditions. The road surface roughness and bridge-vehicle interactions are considered. The road surface profiles for the approaching roadway and bridge decks are generated from power spectral density functions for different road roughness conditions. A new filtering method using the wheel trace is proposed to obtain the more rational bridge-vehicle interactions from the randomly generated road surface. The possible settlement condition between the bridge deck and approaching roadway is also included. The dynamic responses of various bridges designed according to current design practice are examined, in which important structural parameters(such as span length, girder spacing, etc.) are considered systematically. In addition to the basic loading conditions due to a single truck passing on the bridge, the traffic conditions of multi-truck traveling either consecutively on the same lane or side-by-side on the adjacent lanes are also evaluated.

  • PDF