• Title/Summary/Keyword: multi-hop transmission

Search Result 269, Processing Time 0.019 seconds

System Throughput of Cognitive Radio Multi-hop Relay Networks (무선인지 멀티홉 릴레이 네트워크의 시스템 스루풋)

  • Hassan, I.;Rho, Chang-Bae;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.29-39
    • /
    • 2009
  • The need for radio spectrum is recently considered as a huge hurdle towards the rapid development of wireless networks. Large parts of the spectrum are allocated to licensed radio services in proprietary way. However, enormous success of the wireless services and technologies in the unlicensed bands has brought new ideas and innovations. In recent years cognitive radio has gained much attention for solving the spectrum scarcity problem. It changes the way spectrum is regulated so that more efficient spectrum utilization is possible. Multi-hop relay technology on the other hand has intensively been studied in the area of ad hoc and peer-to-peer networks. But in cellular network, only recently the integration of multi-hop capability is considered to enhance the performance significantly. Multi-hop relaying can extend the coverage of the cell to provide high data rate service to a greater distance and in the shadowed regions. Very few papers still exist that combine these methods to maximize the spectrum utilization. Thus we propose a network architecture combining these two technologies in a way to maximize the system throughput. We present the throughput capacity equations for the proposed system model considering various system parameters like utilization factor by the primary users and primary users' transmission radius and through extensive numerical simulations we analyze the significance of work.

QoS Routing for WiMedia-Based Wireless Mesh Networks (WiMedia 기반 무선 메쉬 네트워크에서 QoS를 고려한 경로 설정)

  • Park, Sung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.317-324
    • /
    • 2016
  • WiMedia provides the data rate of up to 1Gbps, but the transmission range is restricted to approximately 10 meters. When constructing a multi-hop WiMedia network to extend its coverage, conventional hop-based routing may not guarantee satisfactorily the required QoS. We propose two QoS routing techniques for the WiMedia-based wireless mesh network. The proopsed QoS routing reflects the characteristics of TDMA-based WiMedia MAC and develops QoS extensions separately for on-demand routing and table-driven routing. Through simulations, we identify that the QoS routing shows better performance than the hop-based routing. It also turns out that the QoS on-demand routing and the QoS table-driven routing show conflicting performance results depending on the transmission power.

Fast triangle flip bat algorithm based on curve strategy and rank transformation to improve DV-Hop performance

  • Cai, Xingjuan;Geng, Shaojin;Wang, Penghong;Wang, Lei;Wu, Qidi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5785-5804
    • /
    • 2019
  • The information of localization is a fundamental requirement in wireless sensor network (WSN). The method of distance vector-hop (DV-Hop), a range-free localization algorithm, can locate the ordinary nodes by utilizing the connectivity and multi-hop transmission. However, the error of the estimated distance between the beacon nodes and ordinary nodes is too large. In order to enhance the positioning precision of DV-Hop, fast triangle flip bat algorithm, which is based on curve strategy and rank transformation (FTBA-TCR) is proposed. The rank is introduced to directly select individuals in the population of each generation, which arranges all individuals according to their merits and a threshold is set to get the better solution. To test the algorithm performance, the CEC2013 test suite is used to check out the algorithm's performance. Meanwhile, there are four other algorithms are compared with the proposed algorithm. The results show that our algorithm is greater than other algorithms. And this algorithm is used to enhance the performance of DV-Hop algorithm. The results show that the proposed algorithm receives the lower average localization error and the best performance by comparing with the other algorithms.

Reliable Transmission of Bio-Data for IEEE 11073 PHD Standards at 6LoWPAN Multi-Hop Wireless Sensor Networks (6LoWPAN 멀티-홉 무선 센서 네트워크에서의 IEEE 11073 PHD 표준을 위한 신뢰성 있는 생체 정보 전송)

  • Woo, Yeon Kyung;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.116-123
    • /
    • 2013
  • In mobile healthcare applications, the reliable transmission of the bio-data is very important. In this article, we present a reliable bio-data transmission technique for mobile healthcare monitoring service at 6LoWPAN multi-hop wireless networks. In particular, we expand IEEE 11073-20601 protocol, and propose the reliable path construction for 6LoWPAN aimed to reliably provide mobile healthcare service over wireless sensor network, using IPv6 network. 6LoWPAN is recognized possibility because it is agree with sensor network by raising Adaptation layer on the MAC layer to transmit IPv6 packets. In this article proposed minimize the algorithm complexity and reliability routing protocol because the 6LoWPAN devices are suitable for low cost, small size and battery that can be used to health care system environment. And detailed procedures and algorithms are presented. We the proposed method to prove the superiority of using NS-3 for compareing with AODV protocol.

Design and Application of LoRa-based Network Protocol in IoT Networks (사물 네트워크에서 LoRa 기반 네트워크 프로토콜 설계 및 적용)

  • Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1089-1096
    • /
    • 2019
  • Recently, small-scale IoT services using a small amount of information through low-performance computing have been spread. It requires low cost, low-power, and long-distance communication technologies with wide communication radius, relatively low power consumption. This paper proposes a MAC layer and routing protocol that supports multi-hop transmission in small-scale IoT environment distributed over a large area based on LoRa communication and delivering a small amount of sensing data. The terminal node is mobile and the communication type provides bidirectional transmission between the terminal node and the network application server. By applying the proposed protocol, a production line monitoring system for smart factory was implemented. It was confirmed that the basic monitoring functions are normally performed.

Reliable Hybrid Multicast using Multi-layer Transmission Path (다계층 전송경로를 이용한 신뢰성 있는 하이브리드 멀티캐스트)

  • Gu, Myeong-Mo;Kim, Bong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2019
  • It is important to constantly provide service in real-time multimedia applications using multicast. Transmission path reconstruction occurs in hybrid multicast using Internet Protocol (IP) multicast and ALM in order to adapt the network status to things like congestion. So, there is a problem in which real-time QoS is reduced, caused by an increase in end-to-end delay. In this paper, we want to solve this problem through multi-layer transmission path construction. In the proposed method, we deploy the control server and application layer overlay host (ALOH) in each multicast domain (MD) for hybrid multicast construction. After the control server receives the control information from an ALOH that joins the MD, it makes a group based on the hop count and sends it to the ALOH in each MD. The ALOH in the MD performs the role of sending the packet to another ALOH and constructs the multi-layered transmission path in order of priority by using control information that is received from the control server and based on the delay between neighboring ALOHs. When congestion occurs in, or is absent from, the ALOH in the upper MD, the ALOH selects the path with the highest priority in order to reduce end-to-end delay. Simulation results show that the proposed method could reduce the end-to-end delay to less than 289 ms, on average, under congestion status.

Urgency-Aware Adaptive Routing Protocol for Energy-Harvesting Wireless Sensor Networks

  • Kang, Min-Seung;Park, Hyung-Kun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.25-33
    • /
    • 2021
  • Energy-harvesting wireless sensor networks(EH-WSNs) can collect energy from the environment and overcome the technical limitations of existing power. Since the transmission distance in a wireless sensor network is limited, the data are delivered to the destination node through multi-hop routing. In EH-WSNs, the routing protocol should consider the power situations of nodes, which is determined by the remaining power and energy-harvesting rate. In addition, in applications such as environmental monitoring, when there are urgent data, the routing protocol should be able to transmit it stably and quickly. This paper proposes an adaptive routing protocol that satisfies different requirements of normal and urgent data. To extend network lifetime, the proposed routing protocol reduces power imbalance for normal data and also minimizes transmission latency by controlling the transmission power for urgent data. Simulation results show that the proposed adaptive routing can improve network lifetime by mitigating the power imbalance and greatly reduce the transmission delay of urgent data.

Reliable Data Transmission Based on Erasure-resilient Code in Wireless Sensor Networks

  • Lei, Jian-Jun;Kwon, Gu-In
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.62-77
    • /
    • 2010
  • Emerging applications with high data rates will need to transport bulk data reliably in wireless sensor networks. ARQ (Automatic Repeat request) or Forward Error Correction (FEC) code schemes can be used to provide reliable transmission in a sensor network. However, the naive ARQ approach drops the whole frame, even though there is a bit error in the frame and the FEC at the bit level scheme may require a highly complex method to adjust the amount of FEC redundancy. We propose a bulk data transmission scheme based on erasure-resilient code in this paper to overcome these inefficiencies. The sender fragments bulk data into many small blocks, encodes the blocks with LT codes and packages several such blocks into a frame. The receiver only drops the corrupted blocks (compared to the entire frame) and the original data can be reconstructed if sufficient error-free blocks are received. An incidental benefit is that the frame error rate (FER) becomes irrelevant to frame size (error recovery). A frame can therefore be sufficiently large to provide high utilization of the wireless channel bandwidth without sacrificing the effectiveness of error recovery. The scheme has been implemented as a new data link layer in TinyOS, and evaluated through experiments in a testbed of Zigbex motes. Results show single hop transmission throughput can be improved by at least 20% under typical wireless channel conditions. It also reduces the transmission time of a reasonable range of size files by more than 30%, compared to a frame ARQ scheme. The total number of bytes sent by all nodes in the multi-hop communication is reduced by more than 60% compared to the frame ARQ scheme.

Opportunistic Multipath Routing Scheme for Guaranteeing End-to-End Reliability in Large-Scale Wireless Sensor Networks (대규모 무선 센서 망에서 종단 간 신뢰성 보장을 위한 기회적 다중경로 라우팅 방안)

  • Kim, Cheonyong;Jung, Kwansoo;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2026-2034
    • /
    • 2015
  • Wireless sensor networks (WSNs) consist of a lot of sensor nodes having limited transmission range. So multi-hop transmission is used for communication among nodes but the multi-hop transmission degrade the end-to-end reliability. Multipath routing and opportunistic routing are typical approaches for guaranteeing end-to-end reliability in WSNs. The existing protocols improve the reliability effectively in small networks but they suffer from rapid performance degradation in large networks. In this paper, we propose the opportunistic multipath routing protocol for guaranteeing end-to-end reliability in large WSNs. Applying multipath routing and opportunistic routing simultaneously is very hard because their conflicting routing features. The proposed protocol applies these approaches simultaneously by section-based routing thereby enhancing end-to-end reliability. Additionally, the proposed protocol guarantees required reliability by the concept of section reliability. The section reliability over a certain level might satisfy required end-to-end reliability. Our simulation results show that the proposed protocol is more suitable for guaranteeing reliability than existing protocols in large-scale WSNs.

Energy Balancing Distribution Cluster With Hierarchical Routing In Sensor Networks (계층적 라우팅 경로를 제공하는 에너지 균등분포 클러스터 센서 네트워크)

  • Mary Wu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.166-171
    • /
    • 2023
  • Efficient energy management is a very important factor in sensor networks with limited resources, and cluster techniques have been studied a lot in this respect. However, a problem may occur in which energy use of the cluster header is concentrated, and when the cluster header is not evenly distributed over the entire area but concentrated in a specific area, the transmission distance of the cluster members may be large or very uneven. The transmission distance can be directly related to the problem of energy consumption. Since the energy of a specific node is quickly exhausted, the lifetime of the sensor network is shortened, and the efficiency of the entire sensor network is reduced. Thus, balanced energy consumption of sensor nodes is a very important research task. In this study, factors for balanced energy consumption by cluster headers and sensor nodes are analyzed, and a balancing distribution clustering method in which cluster headers are balanced distributed throughout the sensor network is proposed. The proposed cluster method uses multi-hop routing to reduce energy consumption of sensor nodes due to long-distance transmission. Existing multi-hop cluster studies sets up a multi-hop cluster path through a two-step process of cluster setup and routing path setup, whereas the proposed method establishes a hierarchical cluster routing path in the process of selecting cluster headers to minimize the overhead of control messages.