• Title/Summary/Keyword: multi-holes

Search Result 162, Processing Time 0.02 seconds

Tegumental Ultrastructures of Spirometra erinacei by Developmental stages (만손열두조충의 발육단계별 표피 미세구조)

  • Sohn, Woon-Mok;Lee, Jin-Ha
    • Applied Microscopy
    • /
    • v.35 no.1
    • /
    • pp.41-56
    • /
    • 2005
  • Present study was performed to observe the tegumental ultrastructures by the developmental stages which derived from the experimental life cycle of Spirometra erinacei in laboratory conditions. In SEM view, coracidium was spherical in shape with numerous cilia, and its surface was covered with long cilia, tuberclelike projections with millet-like processes, and small holes. The body surface of procercoid was covered with numerous pointed microtriches except that of frontal pit with stout spine-like ones. However that of cercomer was covered with somewhat sparse blunt-tiped microtriches. Plerocercoids of 3 days old resembled the mature procercoid in shape, and their frontal pits were covered with numerous stout spine-like microtriches. However frontal pit and body surface in more than 5 days old ones were covered with conoid microtriches. On the surface of adult scolex, hairly long filamentous and stout short microtriches were mixedly distributed. Filamentous microtriches were more densely distributed in the anterior portion than in the posterior of scolex. The neck and immature proglottid were covered with only stout short conoid microtriches. In TEM view of coracidia, embryophore and oncosphere were obviously distinguished. The embryophore contained numerous glycogen particles, mitochondria and lipid granules. The cilia on the surface of embryophore rooted in the coracidial sheath, and consisted of 9 pairs of microtubules and 2 core complex. The oncosphere was covered with a thin and unarmed tegument, and was multi-nucleated. The protoplasmic layer of procercoid and plerocercoid consisted of disc-shaped bodies, vacuoles and mitochondria. Their tegumental cells commonly retained a nucleus, granular endoplasmic reticulums and secretory granules. The protoplasmic layer of plerocercoid was more compacted than that of procercoid. From the above results, it was confirmed that the tegumental ultrastructures are something different according to the developmental stages of S. erinacei.

The Phenomenological Comparison between Results from Single-hole and Cross-hole Hydraulic Test (균열암반 매질 내 단공 및 공간 간섭 시험에 대한 현상적 비교)

  • Kim, Tae-Hee;Kim, Kue-Young;Oh, Jun-Ho;Hwang, Se-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.39-53
    • /
    • 2007
  • Generally, fractured medium can be described with some key parameters, such as hydraulic conductivities or random field of hydraulic conductivities (continuum model), spatial and statistical distribution of permeable fractures (discrete fracture network model). Investigating the practical applicability of the well-known conceptual models for the description of groundwater flow in fractured media, various types of hydraulic tests were applied to studies on the highly fractured media in Geumsan, Korea. Results from single-hole packer test show that the horizontal hydraulic conductivities in the permeable media are between $7.67{\times}10^{-10}{\sim}3.16{\times}10^{-6}$ m/sec, with $7.70{\times}10^{-7}$ m/sec arithmetic mean and $2.16{\times}10^{-7}$ m/sec geometric mean. Total number of test interval is 110 at 8 holes. The number of completely impermeable interval is 9, and the low permeable interval - below $1.0{\times}10^{-8}$ m/sec is 14. In other words, most of test intervals are permeable. The vertical distribution of hydraulic conductivities shows apparently the good correlation with the results of flowmeter test. But the results from the cross-hole test show some different features. The results from the cross-hole test are highly related to the connectivity and/or the binary properties of fractured media; permeable and impermeable. From the viewpoint of the connection, the application of the general stochastic approach with a single continuum model may not be appropriate even in the moderately or highly permeable fractured medium. Then, further studies on the investigation method and the analysis procedures should be required for the reasonable and practical design of the conceptual model, with which the binary properties, including permeable/impermeable features, can be described.