• Title/Summary/Keyword: multi-field coupling

Search Result 68, Processing Time 0.025 seconds

Multi-layers grid environment modeling for nuclear facilities: A virtual simulation-based exploration of dose assessment and dose optimization

  • Jia, Ming;Li, Mengkun;Mao, Ting;Yang, Ming
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.956-963
    • /
    • 2020
  • Dose optimization for Radioactive Occupational Personal (ROP) is an important subject in nuclear and radiation safety field. The geometric environment of a nuclear facility is complex and the work area is radioactive, so traditional navigation model and radioactive data field cannot form an effective environment model for dose assessment and dose optimization. The environment model directly affects dose assessment and indirectly affects dose optimization, this is an urgent problem needed to be solved. Therefore, this paper focuses on an environment model used for Dose Assessment and Dose Optimization (DA&DO). We designed a multi-layer radiation field coupling modeling method, and then explored the influence of the environment model to DA&DO by virtual simulation. Then, a simulation test is done, the multi-layer radiation field coupling model for nuclear facilities is demonstrated to be effective for dose assessment and dose optimization through the experiments and analysis.

On holographic Wilsonian renormalization group of massive scalar theory with its self-interactions in AdS

  • Gitae Kim;Jae-Hyuk Oh
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.30-36
    • /
    • 2022
  • Holographic model of massive scalar field with its self-interaction λϕn in AdS space is able to give a logarithmic scale dependence to marginal multi-trace deformation couplings on its dual conformal field theory, where λ is the self-interaction coupling of the scalar field, ϕ, and n is an integral number. In arXiv:1501.06664, the authors realize this feature by looking at bulk scalar solutions near AdS boundary imposing a specific boundary condition between the coefficients of non-normalizable and normalizable modes of the scalar field excitations. We study the same holographic model to see scale dependence of marginal deformations on the dual conformal field theory by employing completely different method: holographic Wilsonian renormalization group. We solve Hamilton-Jacobi equation derived from the holographic model of massive scalar with λϕn interaction and obtain the solution of marginal multi-trace deformations up to the leading order in λ. It turns out that the solution of marginal multi-trace deformation also presents logarithmic behavior in energy scale near UV region.

ED-FEM multi-scale computation procedure for localized failure

  • Rukavina, Ivan;Ibrahimbegovic, Adnan;Do, Xuan Nam;Markovic, Damijan
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.111-127
    • /
    • 2019
  • In this paper, we present a 2D multi-scale coupling computation procedure for localized failure. When modeling the behavior of a structure by a multi-scale method, the macro-scale is used to describe the homogenized response of the structure, and the micro-scale to describe the details of the behavior on the smaller scale of the material where some inelastic mechanisms, like damage or plasticity, can be defined. The micro-scale mesh is defined for each multi-scale element in a way to fit entirely inside it. The two scales are coupled by imposing the constraint on the displacement field over their interface. An embedded discontinuity is implemented in the macro-scale element to capture the softening behavior happening on the micro-scale. The computation is performed using the operator split solution procedure on both scales.

Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock

  • Xiong, Qi-lin;Tian, Xin
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • In this work, transient thermo-piezo-elastic responses of an infinite functionally graded piezoelectric (FGPE) plate whose upper surface suffers time-dependent thermal shock are investigated in the context of different thermo-piezo-elastic theories. The thermal and mechanical properties of functionally graded piezoelectric plate under consideration are expressed as power functions of plate thickness variable. The solution of problem is obtained by solving the corresponding finite element governing equations in time domain directly. Transient thermo-piezo-elastic responses of the FGPE plate, including temperature, stress, displacement, electric intensity and electric potential are presented graphically and analyzed carefully to show multi-field coupling behaviors between them. In addition, the effects of functionally graded parameters on transient thermo-piezo-elastic responses are also investigated to provide a theoretical basis for the application of the FGPE materials.

Electromagnetic Field Analysis on Surge Response of 500 kV EHV Single Circuit Transmission Tower in Lightning Protection System using Neural Networks

  • Jaipradidtham, Chamni
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1637-1640
    • /
    • 2005
  • This paper presents a technique for electromagnetic field analysis on surge response due to Mid-span back-flashovers effects in lightning protection system of 500 kV EHV single circuit transmission tower by the neural networks method. These analyses are based on modeling lightning return stroke as well as on coupling the electromagnetic fields of the stroke channel to the line. The ground conductivity influences both the electric field as well as the coupling mechanism and hence the magnitude and wave shape of the induced voltage. The technique can be used to analyzed the corona voltage effect, the effective of stroke to the span tower, the surge impedance of transmission lines. The maximum voltage from flashovers effects in the lines. The model is compatible with general electromagnetic transients programs such as the ATP-EMTP. The simulation results show that this study analyses for time-domain with those produced by a cascade multi-section model, the surge impedance of a full-sized tower hit directly by a lightning stroke is discussed.

  • PDF

Seismic Response Analysis Considering the Site Effect in Two Dimensional Cases (부지효과를 고려한 2차원 평면상의 지진응답해석)

  • 김민규;임윤묵;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.83-90
    • /
    • 2001
  • The site effects of local geological conditions on seismic ground motion are performed using 2D numerical method. For the analysis, a numerical method far ground response analysis using FE-BE coupling method is developed. The total system is divided into two parts so called far field and near field. The far field is modeled by boundary element formulation using the multi-layered dynamic fundamental solution that satisfied radiational condition of wave. And this is coupled with near field modeled by finite elements. In order to verify the seismic response analysis, the results are compared with those of commercial code. As a result, it is shown that the developed method can be an efficient numerical method to solve the seismic response analysis of the site effect in 2D problem.

  • PDF

Prediction of PTO Power Requirements according to Surface energy during Rotary Tillage using DEM-MBD Coupling Model (이산요소법-다물체동역학 연성해석 모델을 활용한 로타리 경운작업 시 표면 에너지에 따른 PTO 소요동력 예측)

  • Bo Min Bae;Dae Wi Jung;Jang Hyeon An;Se O Choi;Sang Hyeon Lee;Si Won Sung;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.44-52
    • /
    • 2024
  • In this study, we predicted PTO power requirements based on torque predicted by the discrete element method and the multi-body dynamics coupling method. Six different scenarios were simulated to predict PTO power requirements in different soil conditions. The first scenario was a tillage operation on cohesionless soil, and the field was modeled using the Hertz-Mindlin contact model. In the second through sixth scenarios, tillage operations were performed on viscous soils, and the field was represented by the Hertz-Mindlin + JKR model for cohesion. To check the influence of surface energy, a parameter to reproduce cohesion, on the power requirement, a simple regression analysis was performed. The significance and appropriateness of the regression model were checked and found to be acceptable. The study findings are expected to be used in design optimization studies of agricultural machinery by predicting power requirements using the discrete element method and the multi-body dynamics coupling method and analyzing the effect of soil cohesion on the power requirement.

Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring (접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석)

  • 김민규;김문겸;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

COMPONENT AND SYSTEM MULTI-SCALE DIRECT-COUPLED CODE IMPLEMENTATION USING CUPID AND MARS CODES (CUPID 코드와 MARS 코드를 이용한 기기/계통 다중스케일 연계 해석 코드 구현)

  • Park, I.K.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.89-97
    • /
    • 2016
  • In this study, direct code coupling, in which two codes share a single flow field, was conducted using 3-dimensional high resolution thermal hydraulics code, CUPID and 1-dimensional system analysis code, MARS. This approach provide the merit to use versatile capability of MARS for nuclear power plants and 3-dimensional T/H analysis capability of CUPID. Numerical Method to directly couple CUPID and MARS was described in this paper. The straight flow and manometer flow oscillation were calculated to verify conservation of coupled CUPID/MARS code in mass, momentum, and energy. This verification calculations indicates that the CUPID/MARS is coupled appropriately in numerical aspect and the coupled code can be applied to nuclear reactor thermal hydraulics after validation against integral transient experiments.

Multi-channel Bandpass Filtering Characteristics of a Fiber to $LiMbO_3$ MMOW Coupler (광섬유와 리튬나오베이트 다중모드 도파로 결합기의 다중 채널 대역통과 필터 특성)

  • 손경락;이남권;송재원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.216-217
    • /
    • 2001
  • 광섬유와 평면 도파로를 결합한 도파로 구조에서 광 결합 현상은 다양한 응용 가능성 때문에 이론적으로 또는 실험적으로 많은 연구가 되어오고 있다. 광섬유는 단일모드를 이용하고 적당한 곡률이 주어진 블록에 고정한 후 연마하여 클래딩의 일부를 제거하고, 그 상부에 다중모드 평면 도파로(Multi-Mode Overlay Waveguide; MMOW)를 구성한다. 제작된 결합기 구조에서 평면 도파로는 광섬유의 감쇠장 결합(Evanescent field coupling)을 유도하게 되므로, 소자의 특성은 평면 도파로의 구조와 조건에 의해 결정된다. (중략)

  • PDF