• 제목/요약/키워드: multi-dimensional flow

검색결과 341건 처리시간 0.025초

운동량 방정식의 대류항 이산화 방법이 다차원 2상 유동 해석에 미치는 영향 분석 (AN ANALYSIS OF DISCRETIZATION EFFECT OF MOMENTUM CONVECTION TERM FOR MULTI-DIMENSIONAL TWO-PHASE FLOWS)

  • 박익규;조형규;윤한영;정재준
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.86-94
    • /
    • 2009
  • The non-conservative form of momentum equations is often used for some two-phase flow codes instead of a conservative form because of numerical convenience. Another non-conservative form, so called, a semi-conservative form can improve the numerical solution of these codes maintaining the numerical convenience. It is close to the conservative form but still maintains the feature of the non-conservative form. A semi-conservative form of the momentum equations and a non-conservative form of the momentum equations are implemented in CUPID[1] code. The numerical results of the semi-conservative and the non-conservative forms are compared against analytical solutions and the solutions of the FLUENT code that uses the conservative form. The results clearly showed that the semi-conservative form of the momentum equations provides better solutions than the non-conservative form, especially for heterogeneous two-phase flows.

Robustness Improvement and Assessment of EARSM k-ω Model for Complex Turbulent Flows

  • Zhang, Qiang;Li, Dian;Xia, ZhenFeng;Yang, Yong
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.67-72
    • /
    • 2015
  • The main concern of this study is to integrate the EARSM into an industrial RANS solver in conjunction with the $k-{\omega}$ model, as proposed by Hellsten (EARSMKO2005). In order to improve the robustness, particular limiters are introduced to turbulent conservative variables, and a suitable full-approximation storage (FAS) multi-grid (MG) strategy is designed to incorporate turbulence model equations. The present limiters and MG strategy improve both robustness and efficiency significantly but without degenerating accuracy. Two discretization approachs for velocity gradient on cell interfaces are implemented and compared with each other. Numerical results of a three-dimensional supersonic square duct flow show that the proper discretization of velocity gradient improves the accuracy essentially. To assess the capability of the resulting EARSM $k-{\omega}$ model to predict complex engineering flow, the case of Common Research Model (CRM, Wing-Body) is performed. All the numerical results demonstrate that the resulting model performs well and is comparable to the standard two-equation models such as SST $k-{\omega}$ model in terms of computational effort, thus it is suitable for industrial applications.

Si 선택적 성장을 위한 대형 CVD 반응기 내의 열 및 유동해석 (Analysis on the Flow and Heat Transfer in a Large Scale CVD Reactor for Si Epitaxial Growth)

  • 장연호;고동국;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제15권1호
    • /
    • pp.41-46
    • /
    • 2016
  • In this study, gas flow and temperature distribution in the multi-wafer planetary CVD reactor for the Si epitaxial growth were analyzed. Although the structure of the reactor was simplified as the first step of the study, the three-dimensional analysis was performed taking all these considerations of the revolution of the susceptor and the rotation of satellites into account. From the analyses, a reasonable velocity field and temperature field were obtained. However, it was found that analyses including the upper structure of the reactor were required in order to obtain more realistic temperature results. DCS mole fraction above the satellite surface and the susceptor surface without satellite was compared in order to check the gas species mixing. We found that satellite rotation helped gases to mix in the reactor.

전산유체역학을 활용한 개수로형 UV소독장비의 해석기법 연구 (Study on CFD Methodology for a Open Channel Type UV Reactor)

  • 황우철;박정규;김현수;이경혁;조진수
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.54-59
    • /
    • 2015
  • The performance of UV reactor which is used in water treatment is strongly affected by UV fluence rate and water flow in the UV reactor. Therefore, CFD tools are widely used in designing process of UV reactors. This paper describes the development of a computational fluid dynamics (CFD) methodology that can be used to calculate the performance of open channel type UV reactor used in wastewater treatment plant. All computations were performed using commercial CFD code, CFX, by considering three dimensional, steady, incompressible flow. The Eulerian-Eulerian multi-phase method were used to capture the water-air interface. The MSSS model, provided by UVCalc3D, was used to calculate the UV intensity field. The numerical predictions and calculated UV Dose were compared with experimental dataset to validate the CFD methodology. The reactor performance based on MS2 log reduction was well matched with measurements within 6%.

Numerical Study of Interior Ballistics with Moving Boundary

  • Sung, Hyung-Gun;Park, Sol;Hong, Gi-Cheol;Roh, Tae-Seong;Choi, Dong-Whan
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.659-665
    • /
    • 2008
  • The 1-D numerical study of the interior ballistics has been conducted. The unsteady compressible 1-D CFD code using SIMPLER algorithm and QUICK scheme has been developed. The mathematical model of the two-phase flow has been established for the behavior of the interior ballistics. The moving boundary due to the projectile motion as the physical phenomena of the interior ballistics results in the varied control volume. In order to analyze the moving boundary, the numerical codes, which apply the ghost-cell extrapolation method and the Lagrangian method respectively, have been developed. The ghost-cell extrapolation method has been used in the Eulerian coordinate system. The Lagrangian method has been used in Non-Eulerian coordinate system. These codes have been verified through the analysis of the free piston motion problem in the tube. Through this study, the basic techniques of the numerical code for the multi-dimensional two-phase flow of the interior ballistics have been obtained.

  • PDF

Integral effect test for steam line break with coupling reactor coolant system and containment using ATLAS-CUBE facility

  • Bae, Byoung-Uhn;Lee, Jae Bong;Park, Yu-Sun;Kim, Jongrok;Kang, Kyoung-Ho
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2477-2487
    • /
    • 2021
  • To improve safety analysis technology for a nuclear reactor containment considering an interaction between a reactor coolant system (RCS) and containment, this study aims at an experimental investigation on the integrated simulation of the RCS and containment, with an integral effect test facility, ATLAS-CUBE. For a realistic simulation of a pressure and temperature (P/T) transient, the containment simulation vessel was designed to preserve a volumetric scale equivalently to the RCS volume scale of ATLAS. Three test cases for a steam line break (SLB) transient were conducted with variation of the initial condition of the passive heat sink or the steam flow direction. The test results indicated a stratified behavior of the steam-gas mixture in the containment following a high-temperature steam injection in prior to the spray injection. The test case with a reduced heat transfer on the passive heat sink showed a faster increase of the P/T inside the containment. The effect of the steam flow direction was also investigated with respect to a multi-dimensional distribution of the local heat transfer on the passive heat sink. The integral effect test data obtained in this study will contribute to validating the evaluation methodology for mass and energy (M/E) and P/T transient of the containment.

Aerodynamic characteristics investigation of Megane multi-box bridge deck by CFD-LES simulations and experimental tests

  • Dragomirescu, Elena;Wang, Zhida;Hoftyzer, Michael S.
    • Wind and Structures
    • /
    • 제22권2호
    • /
    • pp.161-184
    • /
    • 2016
  • Long-span suspension bridges have evolved through the years and with them, the bridge girder decks improved as well, changing their shapes from standard box-deck girders to twin box and multi-box decks sections. The aerodynamic characteristics of the new generation of twin and multiple-decks are investigated nowadays, to provide the best design wind speeds and the optimum dimensions such bridges could achieve. The multi-box Megane bridge deck is one of the new generation bridge decks, consisting of two side decks for traffic lanes and two middle decks for railways, linked between them with connecting beams. Three-dimensional CFD simulations were performed by employing the Large Eddy Simulation (LES) algorithm with a standard Smagorinsky subgrid-scale model, for $Re=9.3{\times}10^7$ and angles of attack ${\alpha}=-4^{\circ}$, $-2^{\circ}$, $0^{\circ}$, $2^{\circ}$ and $4^{\circ}$. Also, a wind tunnel experiment was performed for a scaled model, 1:80 of the Megane bridge deck section, for $Re=5.1{\times}10^5$ and the aerodynamic static coefficients were found to be in good agreement with the results obtained from the CFD-LES model. However the aerodynamic coefficients determined individually, from the CFD-LES model, for each of the traffic and railway decks of the Megane bridge, varied significantly, especially for the downstream traffic deck. Also the pressure distribution and the effect of the spacing between the connecting beams, on the wind speed profiles showed a slight increase in turbulence above the downstream traffic and railway decks.

고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석 (Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV)

  • 이양지;이동호;강영석;임병준
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.

쌍동선형 레저선박의 몰수부 간격에 따른 2차원 유동해석 (2 Dimensional Flow Analysis according to the Submerged Body of Catamaran Leisure Ship)

  • 이창우;오우준;이동섭;손창배;이경우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 추계학술대회
    • /
    • pp.241-242
    • /
    • 2009
  • 다동체 선체의 선형설계에서 선체 사이의 거리는 매우 중요한 설계 요소이다. 다동형 선박은 단동형 선박에 비하여 선체 주위의 비대칭적인 유동 변화, 두 선체 사이의 파형 간섭 등 복잡한 현상들로 인하여 그 체적 설계가 다소 어려운 것이 사실이다. 마찰저항에 비하여 조파저항의 영향이 큰 고속영역에서는 선형개발로 인한 조파저항 및 전체저항 감소할 수 있기 때문에 고속선에 이용되고 있다. 본 연구에서는 다동 몰수체 특히 두 선체 사이 간격에 따른 유동분석과 가시화 하여 유동장내 속도변화를 추적, 유동특성에 대한 실험적 연구를 수행하였다.

  • PDF

4개 대칭배열 발열 전자소자에서의 확산 열저항 산정 (Evaluation of Spreading Thermal Resistance in Symmetrical Four-Heat Generating Electronic Components)

  • 김윤호;김서영;리광훈
    • 설비공학논문집
    • /
    • 제18권8호
    • /
    • pp.664-671
    • /
    • 2006
  • We propose the correlation to predict the spreading thermal resistance on a plate with symmetrical four heat sources. The correlation transforms four heat sources to a single equivalent heat source and then the spreading thermal resistance can be obtained with the existing equation for a single heat source. When the four heat sources are mounted on a square base plate, the correlation is expressed as a function of the heat source size, the length of base plate, the plate thermal conductivity and the distance between heat sources. Compared to the results of three-dimensional numerical analysis, the spreading thermal resistance by the proposed correlation is in good agreement within 10 percent accuracy.