• Title/Summary/Keyword: multi-core systems

Search Result 249, Processing Time 0.024 seconds

Implementation of Ethernet-Based High-Speed Data Communication for Multi-core DSP (멀티 코어 DSP를 위한 이더넷 기반 고속 데이터 통신 구현)

  • Nguyen, Dung Huy;Choi, Joon-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.185-190
    • /
    • 2022
  • We propose a high speed data communication method for motor drive systems with fast control cycle in order to collect state variables of motor control without degrading control performance. Ethernet is chosen for communication device, and multi-core DSP architecture is exploited for communication processing load distribution. The communication program including network protocol stack and motor control program are assigned to two separate cores, and data between two cores are exchanged using interrupt-based inter-process communication mechanism, which enables to achieve a high-speed communication performance without degrading the motor control performance. The performance of developed communication method is demonstrated by real experiments using TCP, UDP and Raw Socket protocols in an experimental setup consisting of TI's TMS320F28388D motor control card and MS Windows PC.

Cost-Aware Scheduling of Computation-Intensive Tasks on Multi-Core Server

  • Ding, Youwei;Liu, Liang;Hu, Kongfa;Dai, Caiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5465-5480
    • /
    • 2018
  • Energy-efficient task scheduling on multi-core server is a fundamental issue in green cloud computing. Multi-core processors are widely used in mobile devices, personal computers, and servers. Existing energy efficient task scheduling methods chiefly focus on reducing the energy consumption of the processor itself, and assume that the cores of the processor are controlled independently. However, the cores of some processors in the market are divided into several voltage islands, in each of which the cores must operate on the same status, and the cost of the server includes not only energy cost of the processor but also the energy of other components of the server and the cost of user waiting time. In this paper, we propose a cost-aware scheduling algorithm ICAS for computation intensive tasks on multi-core server. Tasks are first allocated to cores, and optimal frequency of each core is computed, and the frequency of each voltage island is finally determined. The experiments' results show the cost of ICAS is much lower than the existing method.

A Prediction-Based Dynamic Thermal Management Technique for Multi-Core Systems (멀티코어시스템에서의 예측 기반 동적 온도 관리 기법)

  • Kim, Won-Jin;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.2
    • /
    • pp.55-62
    • /
    • 2009
  • The power consumption of a high-end microprocessor increases very rapidly. High power consumption will lead to a rapid increase in the chip temperature as well. If the temperature reaches beyond a certain level, chip operation becomes either slow or unreliable. Therefore various approaches for Dynamic Thermal Management (DTM) have been proposed. In this paper, we propose a learning based temperature prediction scheme for a multi-core system. In this approach, from repeatedly executing an application, we learn the thermal patterns of the chip, and we control the temperature in advance through DTM. When the predicted temperature may go beyond a threshold value, we reduce the temperature by decreasing the operation frequencies of the corresponding core. We implement our temperature prediction on an Intel's Quad-Core system which has integrated digital thermal sensors. A Dynamic Frequency System (DFS) technique is implemented to have four frequency steps on a Linux kernel. We carried out experiments using Phoronix Test Suite benchmarks for Linux. The peak temperature has been reduced by on average $5^{\circ}C{\sim}7^{\circ}C$. The overall average temperature reduced from $72^{\circ}C$ to $65^{\circ}C$.

  • PDF

TBBench: A Micro-Benchmark Suite for Intel Threading Building Blocks

  • Marowka, Ami
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.331-346
    • /
    • 2012
  • Task-based programming is becoming the state-of-the-art method of choice for extracting the desired performance from multi-core chips. It expresses a program in terms of lightweight logical tasks rather than heavyweight threads. Intel Threading Building Blocks (TBB) is a task-based parallel programming paradigm for multi-core processors. The performance gain of this paradigm depends to a great extent on the efficiency of its parallel constructs. The parallel overheads incurred by parallel constructs determine the ability for creating large-scale parallel programs, especially in the case of fine-grain parallelism. This paper presents a study of TBB parallelization overheads. For this purpose, a TBB micro-benchmarks suite called TBBench has been developed. We use TBBench to evaluate the parallelization overheads of TBB on different multi-core machines and different compilers. We report in detail in this paper on the relative overheads and analyze the running results.

Design and Construction of Fiber Optical Link Application System for Multi-Video Audio Data Transmission (광MVAD(Multi-Video Audio Data)쌍방향 다채널링크시스템 설계)

  • Lee, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2691-2695
    • /
    • 2009
  • Nowadays Fiber optical communication systems have limitless bandwidth and can be used for transmitting various multimedia data with in real time. It is necessary to construct integrated service systems that can be used in our society whole to communicate multimedia data such as text, image, audio and video data in fiber optic communication systems. In this paper, we have designed and constructed the fiber optical link application system for multi-video/audio data transmission using only one core optical cable upgrading previous fiber optical communication systems based on WDM (Wavelength Division Multiplexer). Using the proposed fiber optical link application system enables us to managing fiber optical communication systems with only one core optical cable using WDM (Wavelength Division Multiplexer) and DEWDM/Wavelength splitter.

Dynamic Redundancy-based Fault-Recovery Scheme for Reliable CGRA-based Multi-Core Architecture

  • Kim, Yoonjin;Sohn, Seungyeon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.615-628
    • /
    • 2015
  • CGRA (Coarse-Grained Reconfigurable Architecture) based multi-core architecture can be considered as a suitable solution for the fault-tolerant computing. However, there have been a few research projects based on fault-tolerant CGRA without exploiting the strengths of CGRA as well as their works are limited to single CGRA. Therefore, in this paper, we propose two approaches to enable exploiting the inherent redundancy and reconfigurability of the multi-CGRA for fault-recovery. One is a resilient inter-CGRA fabric that is ring-based sharing fabric (RSF) with minimal interconnection overhead. Another is a novel intra/inter-CGRA reconfiguration technique on RSF for maximizing utilization of the resources when faults occur. Experimental results show that the proposed approaches achieve up to 94% faulty recoverability with reducing area/delay/power by up to 15%/28.6%/31% when compared with completely connected fabric (CCF).

The Study of Distributed Processing for Graphics Rendering Engine Based on ARINC 653 Multi-Core System (ARINC 653 멀티코어 기반 그래픽스 렌더링 엔진 분산처리방안 연구)

  • Jung, Mukyoung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, avionics has been migrating from a federated architecture to an integrated modular architecture based on a multi-core to reduce the number of systems, weight, power consumption, and platform redundancy. The volume of data which must bo provided to the pilot through the display device has increased, because an integrated single device performs multiple functions. For this reason, the volume of data processed by the graphic processor within a fixed operation period has increased. In this paper, we provide a multi-core-based rendering engine in to perform more graphics processing within a fixed operation period. We assume the proposed method uses a multi-core-based partitioning operating system using the AMP (Asymmetric Multi-Processing) architecture.

Computation-Communication Overlapping in AES-CCM Using Thread-Level Parallelism on a Multi-Core Processor (멀티코어 프로세서의 쓰레드-수준 병렬성을 활용한 AES-CCM 계산-통신 중첩화)

  • Lee, Eun-Ji;Lee, Sung-Ju;Chung, Yong-Wha;Lee, Myung-Ho;Min, Byoung-Ki
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.8
    • /
    • pp.863-867
    • /
    • 2010
  • Multi-core processors are becoming increasingly popular. As they are widely adopted in embedded systems as well as desktop PC's, many multimedia applications are being parallelized on multi-core platforms. However, it is difficult to parallelize applications with inherent data dependencies such as encryption algorithms for multimedia data. In order to overcome this limit, we propose a technique to overlap computation and communication using an otherwise idle core in this paper. In particular, we interpret the problem of multimedia computation and communication as a pipeline design problem at the application program level, and derive an optimal number of stages in the pipeline.

Real-Time Power-Saving Scheduling Based on Genetic Algorithms in Multi-core Hybrid Memory Environments (멀티코어 이기종메모리 환경에서의 유전 알고리즘 기반 실시간 전력 절감 스케줄링)

  • Yoo, Suhyeon;Jo, Yewon;Cho, Kyung-Woon;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.135-140
    • /
    • 2020
  • Recently, due to the rapid diffusion of intelligent systems and IoT technologies, power saving techniques in real-time embedded systems has become important. In this paper, we propose P-GA (Parallel Genetic Algorithm), a scheduling algorithm aims at reducing the power consumption of real-time systems in multi-core hybrid memory environments. P-GA improves the Proportional-Fairness (PF) algorithm devised for multi-core environments by combining the dynamic voltage/frequency scaling of the processor with the nonvolatile memory technologies. Specifically, P-GA applies genetic algorithms for optimizing the voltage and frequency modes of processors and the memory types, thereby minimizing the power consumptions of the task set. Simulation experiments show that the power consumption of P-GA is reduced by 2.85 times compared to the conventional schemes.

Efficient Hybrid Transactional Memory Scheme using Near-optimal Retry Computation and Sophisticated Memory Management in Multi-core Environment

  • Jang, Yeon-Woo;Kang, Moon-Hwan;Chang, Jae-Woo
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.499-509
    • /
    • 2018
  • Recently, hybrid transactional memory (HyTM) has gained much interest from researchers because it combines the advantages of hardware transactional memory (HTM) and software transactional memory (STM). To provide the concurrency control of transactions, the existing HyTM-based studies use a bloom filter. However, they fail to overcome the typical false positive errors of a bloom filter. Though the existing studies use a global lock, the efficiency of global lock-based memory allocation is significantly low in multi-core environment. In this paper, we propose an efficient hybrid transactional memory scheme using near-optimal retry computation and sophisticated memory management in order to efficiently process transactions in multi-core environment. First, we propose a near-optimal retry computation algorithm that provides an efficient HTM configuration using machine learning algorithms, according to the characteristic of a given workload. Second, we provide an efficient concurrency control for transactions in different environments by using a sophisticated bloom filter. Third, we propose a memory management scheme being optimized for the CPU cache line, in order to provide a fast transaction processing. Finally, it is shown from our performance evaluation that our HyTM scheme achieves up to 2.5 times better performance by using the Stanford transactional applications for multi-processing (STAMP) benchmarks than the state-of-the-art algorithms.