• Title/Summary/Keyword: multi-core systems

Search Result 249, Processing Time 0.04 seconds

Design and Performance Gain Evaluation of a Multi-Rank Codebook Utilizing Statistical Properties of the Spatial Channel Model (공간 채널 모델의 통계적 특성을 반영한 다중 랭크 코드북의 설계 및 성능 이득 평가)

  • Kim, Changhyeon;Sung, Wonjin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.723-731
    • /
    • 2016
  • A core technological base to provide enhanced data rates required by 5G mobile wireless communications is the improved bandwidth efficiency using massive multiple-input multiple-output (MIMO) transmission. MIMO transmission requires the channel estimation using the channel state information reference signaling (CSI-RS) and appropriate beamforming, thus the design of the codebook defining proper beamforming vectors is an important issue. In this paper, we propose a multi-rank codebook based on the discrete Fourier transform (DFT) matrix, by utilizing statistical properties of the channel generated by the spatial channel model (SCM). The proposed method includes a structural change of the precoding matrix indicator (PMI) by considering the phase difference distributions between adjacent antenna elements, as well as the selected codevector characteristics of each transmission layer. Performance gain of the proposed method is evaluated and verified by making the performance comparison to the 3GPP standard codebooks adopted by Long-Term Evolution (LTE) systems.

Application case for phase III of UAM-LWR benchmark: Uncertainty propagation of thermal-hydraulic macroscopic parameters

  • Mesado, C.;Miro, R.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1626-1637
    • /
    • 2020
  • This work covers an important point of the benchmark released by the expert group on Uncertainty Analysis in Modeling of Light Water Reactors. This ambitious benchmark aims to determine the uncertainty in light water reactors systems and processes in all stages of calculation, with emphasis on multi-physics (coupled) and multi-scale simulations. The Gesellschaft für Anlagen und Reaktorsicherheit methodology is used to propagate the thermal-hydraulic uncertainty of macroscopic parameters through TRACE5.0p3/PARCSv3.0 coupled code. The main innovative points achieved in this work are i) a new thermal-hydraulic model is developed with a highly-accurate 3D core discretization plus an iterative process is presented to adjust the 3D bypass flow, ii) a control rod insertion occurrence -which data is obtained from a real PWR test- is used as a transient simulation, iii) two approaches are used for the propagation process: maximum response where the uncertainty and sensitivity analysis is performed for the maximum absolute response and index dependent where the uncertainty and sensitivity analysis is performed at each time step, and iv) RESTING MATLAB code is developed to automate the model generation process and, then, propagate the thermal-hydraulic uncertainty. The input uncertainty information is found in related literature or, if not found, defined based on expert judgment. This paper, first, presents the Gesellschaft für Anlagen und Reaktorsicherheit methodology to propagate the uncertainty in thermal-hydraulic macroscopic parameters and, then, shows the results when the methodology is applied to a PWR reactor.

A Study on the Tree based Memoryless Anti-Collision Algorithm for RFID Systems (RFID 시스템에서의 트리 기반 메모리래스 충돌방지 알고리즘에 관한 연구)

  • Quan Chenghao;Hong Wonkee;Lee Yongdoo;Kim Hiecheol
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.851-862
    • /
    • 2004
  • RFID(Radio frequency IDentification) is a technology that automatically identifies objects containing the electronic tags by using radio wave. The multi-tag identification problem is the core issue in the RFID and could be resolved by the anti-collision algorithm. However, most of the existing anti-collision algorithms have a problem of heavy implementation cost and low performance. In this paper. we propose a new tree based memoryless anti-collision algorithm called a collision tracking tree algorithm and presents its performance evaluation results obtained by simulation. The Collision Tracking Tree algorithm proves itself the capability of an identification rate of 749 tags per second and the performance evaluation results also show that the proposed algorithm outperforms the other two existing tree-based memoryless algorithms, i.e., the tree-walking algorithm and the query tree algorithm about 49 and 2.4 times respectively.

Design and Implementation of a Main-memory Storage System for Real-time Retrievals (실시간 검색을 위한 다중 사용자용 주기억장치 자료저장 시스템 개발)

  • Kwon, Oh-Su;Hong, Dong-Kweon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.187-194
    • /
    • 2003
  • Main Memory storage system can increase the performance of the system by assigning enough slack time to real-time transactions. Due to its high response time of main memory devices, main memory resident data management systems have been used for location management of personal mobile clients to cope with urgent location related operations. In this paper we have developed a multi-threaded main memory storage system as a core component of real-time retrieval system to handle a huge amount of readers and writers of main memory resident data. The storage system is implemented as an embedded component which is working with the help of a disk resident database system. It uses multi-threaded executions and utilizes latches for its concurrency control rather than complex locking method. It only saves most recent data on main memory and data synchronization is done only when disk resident database asks for update transactions. The system controls the number of read threads and update threads to guarantee the minimum requirements of real-time retrievals.

Efficient 3D Modeling of CSEM Data (인공송신원 전자탐사 자료의 효율적인 3차원 모델링)

  • Jeong, Yong-Hyeon;Son, Jeong-Sul;Lee, Tae-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.75-80
    • /
    • 2009
  • Despite its flexibility to complex geometry, three-dimensional (3D) electromagnetic(EM) modeling schemes using finite element method (FEM) have been faced to practical limitation due to the resulting large system of equations to be solved. An efficient 3D FEM modeling scheme has been developed, which can adopt either direct or iterative solver depending on the problems. The direct solver PARDISO can reduce the computing time remarkably by incorporating parallel computing on multi-core processor systems, which is appropriate for single frequency multi-source configurations. When limited memory, the iterative solver BiCGSTAB(1) can provide fast and stable convergence. Efficient 3D simulations can be performed by choosing an optimum solver depending on the computing environment and the problems to be solved. This modeling includes various types of controlled-sources and can be exploited as an efficient engine for 3D inversion.

  • PDF

Micro fluxgate magnetic sensor using multi layer PCB process (PCB 다층 적층기술을 이용한 마이크로 플럭스게이트 자기 센서)

  • Choi, Won-Youl;Hwang, Jun-Sik;Choi, Sang-On
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.72-78
    • /
    • 2003
  • To observe the effect of excitation coil pitch on the micro fluxgate magnetic sensor, two sensors are fabricated using multi layer board process and the pitch distance of excitation coil are $260\;{\mu}m$ and $520\;{\mu}m$, respectively. The fluxgate sensor consists of five PCB stack layers including one layer of magnetic core and four layers of excitation and pick-up coils. The center layer as magnetic core is made of a Co-based amorphous magnetic ribbon with extremely high DC permeability of ${\sim}100,000$ and has a rectangular-ring shape to minimize the magnetic flux leakage. Four outer layers as excitation and pick-up coils have a planar solenoid structure and are made of copper foil. In case of the fluxgate sensor having the excitation coil pitch of $260\;{\mu}m$, excellent linear response over the range of $-100\;{\mu}T$ to $+100\;{\mu}T$ is obtained with sensitivity of 780 V/T at excitation sine wave of $3V_{p_p}$ and 360 kHz. The chip size of the fabricated sensing element is $7.3\;{\times}\;5.7\;mm^2$. The very low power consumption of ${\sim}8\;mW$ is measured. This magnetic sensor is very useful for various applications such as: portable navigation systems, telematics, VR game and so on.

Channel characteristics of multi-path power line using a contactless inductive coupling unit (비접촉식 유도성 결합기를 이용한 다중경로 전력선 채널 특성)

  • Kim, Hyun-Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.799-804
    • /
    • 2016
  • Broadband powerline communication (BPLC) uses distribution lines as a medium for achieving effective bidirectional data communication along with electric current flow. As the material characteristics of power lines are not good at the communication channel, the development of power line communication (PLC) systems for internet, voice, and data services requires measurement-based models of the transfer characteristics of the network suitable for performance analysis by simulation. In this paper, an analytic model describing a complex transfer function is presented to obtain the attenuation and path parameters for a multipath power line model. The calculated results demonstrated frequency-selective fading in multipath channels and signal attenuation with frequency, and were in good agreement with the experimental results. Inductive coupling units are used as couplers for coupling the signal to the power line to avoid physical connections to the distribution line. The inductance of the ferrite core, which depends on the frequency, determines the cut-off frequency of the inductive coupler. Coupling loss can be minimized by increasing the number of windings around the coupler. Coupling efficiency was improved by more than 6 dB with three windings compared to the results obtained with one winding.

A Study on Multi-Facilities Location Decision Model in Perspective of SCM (SCM관점의 복수시설물 입지결정모형에 관한 연구)

  • Park, Dae-Seok;Zhang, Tao
    • Journal of Distribution Science
    • /
    • v.6 no.1
    • /
    • pp.47-62
    • /
    • 2008
  • Joining the WTO in 2001, China became a number of the global economic system. China succeeded in vying to host Beijing 2008 Olympic Games and World Expo 2010 Shanghai. It is China's honor and opportunity to have high economic growth in the coming future. In 2007, the total cost of public logistics decreased by 18.2% than 2006 to 4540.6 billion RMB, accounting for 18.4% of the GDP. So, China logistics is a huge industry and a growing market full of charm. The statistic ratios of China's logistics and growth trends show us it is an important issue to build and run an effective logistics system. However, research on China's logistics systems and supply chain is lacked. This study is focus on the logistic location strategy in China including the study of factories and warehouses geographic strategy concerned with SCM. The core of this study is to propose a New Multi-Facilities Location Decision Model. This study banded the revised gravity center, the standard single facility location decision model(Gravity Center Model) and the transportation model into a new Multi-Facilities Location Decision Model. In addition, this study suggested the gravity center of population, the gravity center of each industry, the location decision graded-list of each industry of china using the gravity center model and the revised gravity center model. The new Multi-Facilities Location Decision Model proposed in this study can be used to solve the location decision problem of more than two facilities. And it can be used in the fields such as the location decision of production facility and service facility, the location of distribution and logistics, the location of broadcast and satellite communications, the location of wireless communication tower and so on.

  • PDF

Classification of Remote Sensing Data using Random Selection of Training Data and Multiple Classifiers (훈련 자료의 임의 선택과 다중 분류자를 이용한 원격탐사 자료의 분류)

  • Park, No-Wook;Yoo, Hee Young;Kim, Yihyun;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.489-499
    • /
    • 2012
  • In this paper, a classifier ensemble framework for remote sensing data classification is presented that combines classification results generated from both different training sets and different classifiers. A core part of the presented framework is to increase a diversity between classification results by using both different training sets and classifiers to improve classification accuracy. First, different training sets that have different sampling densities are generated and used as inputs for supervised classification using different classifiers that show different discrimination capabilities. Then several preliminary classification results are combined via a majority voting scheme to generate a final classification result. A case study of land-cover classification using multi-temporal ENVISAT ASAR data sets is carried out to illustrate the potential of the presented classification framework. In the case study, nine classification results were combined that were generated by using three different training sets and three different classifiers including maximum likelihood classifier, multi-layer perceptron classifier, and support vector machine. The case study results showed that complementary information on the discrimination of land-cover classes of interest would be extracted within the proposed framework and the best classification accuracy was obtained. When comparing different combinations, to combine any classification results where the diversity of the classifiers is not great didn't show an improvement of classification accuracy. Thus, it is recommended to ensure the greater diversity between classifiers in the design of multiple classifier systems.

Detection of Abnormal CAN Messages Using Periodicity and Time Series Analysis (CAN 메시지의 주기성과 시계열 분석을 활용한 비정상 탐지 방법)

  • Se-Rin Kim;Ji-Hyun Sung;Beom-Heon Youn;Harksu Cho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.395-403
    • /
    • 2024
  • Recently, with the advancement of technology, the automotive industry has seen an increase in network connectivity. CAN (Controller Area Network) bus technology enables fast and efficient data communication between various electronic devices and systems within a vehicle, providing a platform that integrates and manages a wide range of functions, from core systems to auxiliary features. However, this increased connectivity raises concerns about network security, as external attackers could potentially gain access to the automotive network, taking control of the vehicle or stealing personal information. This paper analyzed abnormal messages occurring in CAN and confirmed that message occurrence periodicity, frequency, and data changes are important factors in the detection of abnormal messages. Through DBC decoding, the specific meanings of CAN messages were interpreted. Based on this, a model for classifying abnormalities was proposed using the GRU model to analyze the periodicity and trend of message occurrences by measuring the difference (residual) between the predicted and actual messages occurring within a certain period as an abnormality metric. Additionally, for multi-class classification of attack techniques on abnormal messages, a Random Forest model was introduced as a multi-classifier using message occurrence frequency, periodicity, and residuals, achieving improved performance. This model achieved a high accuracy of over 99% in detecting abnormal messages and demonstrated superior performance compared to other existing models.