• Title/Summary/Keyword: multi-classification

Search Result 1,230, Processing Time 0.029 seconds

A Study on the actual condition of Housing Buildings in the Urban area (도시지역 주거관련 건축물의 사용실태에 관한 연구)

  • Kim, Sung-Hwa;Lee, Jae-Hoon;Kim, Yeung-Bean
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2005.11a
    • /
    • pp.57-61
    • /
    • 2005
  • The objectives of this study are to illustrate an alternative housing type responding to the social requirements and customers' needs, to suggest the improvement plan for the related laws and regulations through survey of the actual condition for housing buildings such multi have been raised in classification due to that the existing law systems including the current use classification of residential buildings have been defined unclearly. Especially, various social problems have yielded in line with emergence of the housing type which is not legally classified as residential however used for the living purpose practically. Current zoning planning and related law system have rigidity. So, It is required to introduce a flexible classification system which protects the residential environment based on the housing purpose, function and habitability and provides correspondence between residence and ownership/management method. The legal classification system should be revised in a way that the housing use classification corresponds with the zoning system through breakdown of the use classification system

  • PDF

Light-weight Gender Classification and Age Estimation based on Ensemble Multi-tasking Deep Learning (앙상블 멀티태스킹 딥러닝 기반 경량 성별 분류 및 나이별 추정)

  • Huy Tran, Quoc Bao;Park, JongHyeon;Chung, SunTae
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • Image-based gender classification and age estimation of human are classic problems in computer vision. Most of researches in this field focus just only one task of either gender classification or age estimation and most of the reported methods for each task focus on accuracy performance and are not computationally light. Thus, running both tasks together simultaneously on low cost mobile or embedded systems with limited cpu processing speed and memory capacity are practically prohibited. In this paper, we propose a novel light-weight gender classification and age estimation method based on ensemble multitasking deep learning with light-weight processing neural network architecture, which processes both gender classification and age estimation simultaneously and in real-time even for embedded systems. Through experiments over various well-known datasets, it is shown that the proposed method performs comparably to the state-of-the-art gender classification and/or age estimation methods with respect to accuracy and runs fast enough (average 14fps) on a Jestson Nano embedded board.

A Convolutional Neural Network Model with Weighted Combination of Multi-scale Spatial Features for Crop Classification (작물 분류를 위한 다중 규모 공간특징의 가중 결합 기반 합성곱 신경망 모델)

  • Park, Min-Gyu;Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1273-1283
    • /
    • 2019
  • This paper proposes an advanced crop classification model that combines a procedure for weighted combination of spatial features extracted from multi-scale input images with a conventional convolutional neural network (CNN) structure. The proposed model first extracts spatial features from patches with different sizes in convolution layers, and then assigns different weights to the extracted spatial features by considering feature-specific importance using squeeze-and-excitation block sets. The novelty of the model lies in its ability to extract spatial features useful for classification and account for their relative importance. A case study of crop classification with multi-temporal Landsat-8 OLI images in Illinois, USA was carried out to evaluate the classification performance of the proposed model. The impact of patch sizes on crop classification was first assessed in a single-patch model to find useful patch sizes. The classification performance of the proposed model was then compared with those of conventional two CNN models including the single-patch model and a multi-patch model without considering feature-specific weights. From the results of comparison experiments, the proposed model could alleviate misclassification patterns by considering the spatial characteristics of different crops in the study area, achieving the best classification accuracy compared to the other models. Based on the case study results, the proposed model, which can account for the relative importance of spatial features, would be effectively applied to classification of objects with different spatial characteristics, as well as crops.

New Multi-Stage Blind Clustering Equalizers for QAM Demodulation (QAM 복조용 새로운 다단계 자력복구 군집형 채널등화기)

  • Hwang, Yu-Mo;Lee, Jung-Hyeon;Song, Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.269-277
    • /
    • 2000
  • We propose two new types multi-stage blind clustering equalizers for QAM demoulation, which are called a complex classification algorithm(CCA) and a radial basis function algorithm(RBFA). The CCA uses a clustering technique based on the joint gaussian probability function and computes separately the real part and imaginary part for simple implementation as well as less computation. In order to improve the performance of CCA, the Dual-Mode CCA(DMCCA) incorporates the CCA tap-updating mode with the decision-directed(DD) mode. The RBFA reduces the number of cluster centers through three steps using the classification technique of RBF and then updates the equalizer taps for QAM demodulation. Test results on 16-QAM confirm that the proposed algorithms perform better the conventional multi-state equalizers in the senses of SER and MSE under multi-path fading channel.

  • PDF

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Classification of Crop Lands over Northern Mongolia Using Multi-Temporal Landsat TM Data

  • Ganbaatar, Gerelmaa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.611-619
    • /
    • 2013
  • Although the need of crop production has increased in Mongolia, crop cultivation is very limited because of the harsh climatic and topographic conditions. Crop lands are sparsely distributed with relatively small sizes and, therefore, it is difficult to survey the exact area of crop lands. The study aimed to find an easy and effective way of accurate classification to map crop lands in Mongolia using satellite images. To classify the crop lands over the study area in northern Mongolia, four classifications were carried out by using 1) Thematic Mapper (TM) image August 23, 2) TM image of July 6, 3) combined 12 bands of TM images of July and August, and 4) both TM images of July and August by layered classification. Wheat and potato are the major crop types and they show relatively high variation in crop conditions between July and August. On the other hands, other land cover types (forest, riparian vegetation, grassland, water and bare soil) do not show such difference between July and August. The results of four classifications clearly show that the use of multi-temporal images is essential to accurately classify the crop lands. The layered classification method, in which each class is separated by a subset of TM images, shows the highest classification accuracy (93.7%) of the crop lands. The classification accuracies are lower when we use only a single TM image of either July or August. Because of the different planting practice of potato and the growth condition of wheat, the spectral characteristics of potato and wheat cannot be fully separated from other cover types with TM image of either July or August. Further refinements on the spatial characteristics of existing crop lands may enhance the crop mapping method in Mongolia.

A Text Sentiment Classification Method Based on LSTM-CNN

  • Wang, Guangxing;Shin, Seong-Yoon;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.1-7
    • /
    • 2019
  • With the in-depth development of machine learning, the deep learning method has made great progress, especially with the Convolution Neural Network(CNN). Compared with traditional text sentiment classification methods, deep learning based CNNs have made great progress in text classification and processing of complex multi-label and multi-classification experiments. However, there are also problems with the neural network for text sentiment classification. In this paper, we propose a fusion model based on Long-Short Term Memory networks(LSTM) and CNN deep learning methods, and applied to multi-category news datasets, and achieved good results. Experiments show that the fusion model based on deep learning has greatly improved the precision and accuracy of text sentiment classification. This method will become an important way to optimize the model and improve the performance of the model.

Multi-Criteria ABC Inventory Classification Using the Cross-Efficiency Method in DEA (DEA의 교차효율성을 활용한 다기준 ABC 재고 분류 방법 연구)

  • Park, Jae-Hun;Bae, Hye-Rim;Lim, Sung-Mook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.358-366
    • /
    • 2011
  • Multi-criteria ABC inventory classification, which aims to classify inventory items by considering more than one criterion, is one of the most widely employed techniques for inventory control. The weighted linear optimization (WLO) model proposed by Ramanathan (2006) solves the problem of multi-criteria ABC inventory classification by generating a set of criterion weights for each inventory item and assigning a normalized score to the item for ABC analysis. However, the WLO model has some limitations. First, many inventory items can share the same optimal score, which can hinder a precise classification of inventory items. Second, the model allows too much flexibility in weighting multiple criteria; each item is allowed to choose its own weights so that it can maximize its score. As a result, if an item dominates the others in terms of a certain criterion, it may be classified into a higher class regardless of other criteria by assigning an overwhelming weight to the criterion. Consequently, an item with a high value in an unimportant criterion and low values in others may be inappropriately classified as class A, leading to an inaccurate classification of inventory items. To overcome these shortcomings, we extend the WLO model by using the cross-efficiency method in data envelopment analysis. We claim that the proposed model can provide a more reasonable and accurate classification of inventory items by mitigating the adverse effect of flexibility in the choice of weights and yielding a unique ordering of inventory items.

Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model (Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘)

  • Moon, Sun-Kuk;Choi, Tack-Sung;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.965-974
    • /
    • 2007
  • In this paper, we proposed the feature selection algorithm for multi-class genre classification. In our proposed algorithm, we developed GMM separation score based on Gaussian mixture model for measuring separability between two genres. Additionally, we improved feature subset selection algorithm based on sequential forward selection for multi-class genre classification. Instead of setting criterion as entire genre separability measures, we set criterion as worst genre separability measure for each sequential selection step. In order to assess the performance proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigate classification performance by GMM classifier and k-NN classifier for selected features using conventional algorithm and proposed algorithm. Proposed algorithm showed improved performance in classification accuracy up to 10 percent for classification experiments of low dimension feature vector especially.

The Relationship between Preoperative Wound Classification and Postoperative Infection: A Multi-Institutional Analysis of 15,289 Patients

  • Mioton, Lauren M.;Jordan, Sumanas W.;Hanwright, Philip J.;Bilimoria, Karl Y.;Kim, John Y.S.
    • Archives of Plastic Surgery
    • /
    • v.40 no.5
    • /
    • pp.522-529
    • /
    • 2013
  • Background Despite advances in surgical techniques, sterile protocols, and perioperative antibiotic regimens, surgical site infections (SSIs) remain a significant problem. We investigated the relationship between wound classification (i.e., clean, clean/contaminated, contaminated, dirty) and SSI rates in plastic surgery. Methods We performed a retrospective review of a multi-institutional, surgical outcomes database for all patients undergoing plastic surgery procedures from 2006-2010. Patient demographics, wound classification, and 30-day outcomes were recorded and analyzed by multivariate logistic regression. Results A total of 15,289 plastic surgery cases were analyzed. The overall SSI rate was 3.00%, with superficial SSIs occurring at comparable rates across wound classes. There were similar rates of deep SSIs in the clean and clean/contaminated groups (0.64%), while rates reached over 2% in contaminated and dirty cases. Organ/space SSIs occurred in less than 1% of each wound classification. Contaminated and dirty cases were at an increased risk for deep SSIs (odds ratios, 2.81 and 2.74, respectively); however, wound classification did not appear to be a significant predictor of superficial or organ/space SSIs. Clean/contaminated, contaminated, and dirty cases were at increased risk for a postoperative complication, and contaminated and dirty cases also had higher odds of reoperation and 30-day mortality. Conclusions Analyzing a multi-center database, we found that wound classification was a significant predictor of overall complications, reoperation, and mortality, but not an adequate predictor of surgical site infections. When comparing infections for a given wound classification, plastic surgery had lower overall rates than the surgical population at large.