• Title/Summary/Keyword: multi-cells

Search Result 840, Processing Time 0.03 seconds

Input Port re-allocation technique for the elimination of the internal blocking in banyan ATM switches (반얀망 ATM 스위치에서의 내부충돌 제거를 위한 입력 포트 재할당 기법)

  • 이주영;정준모;고광철;정재일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.11C
    • /
    • pp.1124-1131
    • /
    • 2002
  • The banyan network is a popular and basic structure of the multi-stage ATM switches. This paper presents a novel approach to resolve the internal blocking of the banyan network by using a Non-Blocking Permutation Generator (NBPG). The NBPG performs two functions, i.e., the first is to extract the conflict cells from the incoming cells and Ole second is to re-assign new input port addresses to the conflict cells. As a result, NBPG generates non-blocking I/O permutations. To estimate the performance of the NBPG, we provide the results of several simulations.

Effects of Gyejijakyakjimo-tang extract on inhibition of PGE2 synthesis and NO production in murine raw 264.7 macrophage cells

  • Park, Kyoung-Su;Hwang, Mi-Ja;Nam, Ki-Bong;Ryu, Ji-Mi;Chung, Seok-Hee
    • Advances in Traditional Medicine
    • /
    • v.7 no.5
    • /
    • pp.509-517
    • /
    • 2008
  • Gyejijakyakjimo-tang is a multi-herbal formula that is composed of nine medicinal herbs. Gyejijakyakjimo-tang has been reported to have antipyretic and analgesic effects. Gyejijakyakjimo-tang has traditionally been used for goat and rheumatoid arthritis. However, analgesic and antiinflammatory effects of Gyejijakyakjimo-tang has not been clarified yet. In this study, we investigated the analgesic and anti-inflammatory effect of the aqueous extract of Gyejijakyakjimo-tang. We evaluated the aqueous extract of Gyejijakyakjimo-tang on Lipopolysaccharide (LPS)-induced inflammation in murine raw 264.7 macrophage cells. For this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR), prostaglandin $E_2$ ($PGE_2$) immunoassay, and nitric oxide (NO) detection were performed. Gyejijakyakjimo-tang suppressed $PGE_2$ synthesis and NO production by inhibiting the LPS-induced expressions of COX-2 and iNOS mRNA in murine raw 264.7 macrophage cells. These results show that Gyejijakyakjimo-tang has the analgesic and anti-inflammatory effect by mostly suppressing COX-2 and iNOS expressions, and resulting in the inhibition of $PGE_2$ synthesis and NO production.

Cytocidal Effect of TALP-32 on Human Cervical Cancer Cell HeLa (TALP-32의 인체자궁암 세포주 HeLa에 대한 세포독성)

  • Park, Ji-Hoon;Kim, Jong-Seok;Yun, Eun-Jin;Song, Kyoung-Sub;Seo, Kang-Sik;Kim, Hoon;Jung, Yeon-Joo;Yun, Wan-Hee;Lim, Kyu;Hwang, Byoung-Doo;Park, Jong-Il
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • TALP-32 is highly basic protein with a molecular weight of 32 kDa purified from human term placenta. Some basic proteins such as defensins and cecropins are known to induce cell death by increasing membrane permeability and some of them are under development as an anticancer drug especially targeting multi-drug resistant cancers. Therefore, we investigated cytotoxic effect and mechanism of TALP-32 When HeLa cell was incubated with TALP-32, cytotoxicity was increased in time and dose dependent manner. As time goes by, HeLa cells became round and plasma membrane was ruptured. Increase of plasma membrane permeability was determined with LDH release assay. Also in transmission electron microscopy, typical morphology of necrotic cell death, such as cell swelling and intracellular organelle disruption was observed, but DNA fragmentation and caspase activation was not. And necrotic cell death was determined with Annexin V/Pl staining. The cytotoxicity of TALP-32 was minimal and decreased or RBC and Hep3B respectively. These data suggests that TALP-32 induces necrosis on rapidly growing cells but not on slowly growing cells implicating the possibility of its development of anticancer peptide drug.

Multicentric T cell lymphosarcoma in a Jeju native boar

  • Yang, Hyoung-Seok;Kang, Sang-Chul;Jung, Ji-Youl;Roh, In-Soon;Kim, Dae-Yong;Bae, Jong-Hee;Kim, Jae-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.187-190
    • /
    • 2007
  • A 7-year-old Jeju native boar was requested to the Veterinary Pathology Laboratory of Cheju National University with a clinical signs of anorexia, melena, lethargy and sudden death. At necropsy, four coalescing firm masses were occupied in the abdominal cavity between ventral surface of stomach and pancreas. Individual mass was a yellowish white in color and up to 6 cm in diameter. These masses were not encapsulated and bulged from the cut surface. Liver and spleen were enlarged and pale nodules were presented in these tissues. Some yellowish white nodules up to 5 mm in diameter were scattered in kidneys. Histopathologically, lymphoblastic tumor cells were occupied in the abdominal masses, multifocal areas of liver, kidneys, and spleen. Morphologically lymphoblastic tumor cells were round to oval in shape, and medium to large in size. They had round to oval nuclei, moderate amount of eosinophilic cytoplasm, and many mitotic figures. Immunohistochemistry revealed that tumor cells were CD3-positive and $CD79{\alpha}$-negative, consistent with T-cell lineage. Based on gross, microscopic findings and immunohistochemistry, this case was diagnosed as porcine multi-centric T cell lymphosarcoma. In animals, as in human, the T-cell lymphomas are generally more aggressive than B cell types and respond less well to therapy. In our best knowledge, this is the first report for porcine T cell lymphosarcoma in Korea.

Biogeography Based Optimization for Mobile Station Reporting Cell System Design (생물지리학적 최적화를 적용한 이동체 리포팅 셀 시스템 설계)

  • Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Fast service access involves keeping track of the location of mobile users, while they are moving around the mobile network for a satisfactory level of QoS (Quality of Service) in a cost-effective manner. The location databases are used to keep track of Mobile Terminals (MT) so that incoming calls can be directed to requested mobile terminals at all times. MT reporting cell system used in location management is to designate each cell in the network as a reporting cell or a non-reporting cell. Determination of an optimal number of reporting cells (or reporting cell configuration) for a given network is reporting cell planning (RCP) problem. This is a difficult combinatorial optimization problem which has an exponential complexity. We can see that a cell in a network is either a reporting cell or a non-reporting cell. Hence, for a given network with N cells, the number of possible solutions is 2N. We propose a biogeography based optimization (BBO) for design of mobile station location management system in wireless communication network. The number and locations of reporting cells should be determined to balance the registration for location update and paging operations for search the mobile stations to minimize the cost of system. Experimental results show that our proposed BBO is a fairly effective and competitive approach with respect to solution quality for optimally designing location management system because BBO is suitable for combinatorial optimization and multi-functional problems.

Biomimetics of Nano-pillar (나노섬모의 자연모사 기술)

  • Hur, Shin;Choi, Hong-Soo;Lee, Kyu-Hang;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.98-105
    • /
    • 2009
  • The cochlea of the inner ear has two core components, basilar membrane and hair cells. The basilar membrane disperses incoming sound waves by their frequencies. The hair cells are on the basilar membrane, and they are the sensory receptors generating bioelectric signals. In this paper, a biomimetic technology using ZnO piezoelectric nano-pillar was studied as the part of developing process for artificial cochlea and novel artificial mechanosensory system mimicking human auditory senses. In particular, ZnO piezoelectric nano-pillar was fabricated by both low and high temperature growth methods. ZnO piezoelectric nano-pillars were grown on solid (high temperature growth) and flexible (low temperature growth) substrates. The substrates were patterned prior to ZnO nano-pillar growth so that we can selectively grow ZnO nano-pillar on the substrates. A multi-physical simulation was also conducted to understand the behavior of ZnO nano-pillar. The simulation results show electric potential, von Mises stress, and deformation in the ZnO nano-pillar. Both the experimental and computational works help characterize and optimize ZnO nano-pillar.

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

Characterization of CTLA-4 Antigen Expression: Identification of Molecules Composing Intracellular CTLA-4 Multiprotein Complex (CTLA-4 항원의 활성 T 세포내 발현의 특성: 세포질내 단백복합체 구성분자의 동정)

  • Rhim, Dae-Cheol;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Background: CTLA-4 (Cytotoxic T Lymphocyte associated Antigen 4, CD152) has been known as a homologue of CD28, an accessory molecule providing a key costimulatory signal for successful antigen-driven activations of T lymphocyte. Most of biochemical and cell biological characteristics of the CD152 protein remain unknown while those of CD28 have been characterized in detail. Methods: In this study CD152 expression in both $CD4^+$ and $CD8^+$ PBLs was studied by using flow cytometry. And intracellular CD152 multiprotein complex was purified and used for generating antibodies recognizing proteins composing of intracellular CTLA-4 multi protein complex. Results: Level of surface expression of this molecule was peaked at 2 days of PHA stimulation in flow cytometric analysis. 40~45% of PHA blast cells were $CD152^+$ in both of two subsets at this stage and the level of expression were equivalent in both two subsets. Contrary to this surface expression, intracellular expression was peaked at day 3 and it was preferentially induced in $CD8^+$ cells and about 60% of $CD8^+$ cells were $CD152^+$ at this stage. High molecular weight (>350 kD) intacellular CD152 protein complex purified by using preparative electrophoresis were immunized into rabbits and then 3 different anti-P34PC4, anti-P34PC7 and anti-P34PC8 antibodies were obtained. Using these 3 antibodies two unknown antigens associated with intracellular CD152 multiprotein complex were found and their molecular weights were 54 kD and 75 kD, respectively. Among these, the former was present as 110 kD homodimer in non-reducing condition. Conclusion: It seemed that 34 kD intracellular CD152 molecule forms high molecular weight multiprotein complex at least with 2 proteins of 75 kD monomer and 110 kD homodimer.

Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells (고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극)

  • Kim, Ji-Soo;Sim, Eun-Ju;Dao, Van-Duong;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.262-267
    • /
    • 2016
  • In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohybrid materials are applied to counter electrode (CE) of dye-sensitized solar cells (DSCs). The electrochemical properties of CEs are examined through cyclic voltammogram, electrochemical impedance spectroscopy, and Tafel measurements. As a result, both electrochemical catalytic activity and electrical conductivity are highest for PtAu/MWNT electrode. The DSC employing PtAu/MWNT CE exhibits power conversion efficiency of 7.9%. The efficiency is better than those of devices with MWNT (2.6%), AuNP/MWNT (2.7%) and PtNP/MWNT (7.5%) CEs.

Deoxypodophyllotoxin Inhibits Cell Growth and Induces Apoptosis by Blocking EGFR and MET in Gefitinib-Resistant Non-Small Cell Lung Cancer

  • Kim, Han Sol;Oh, Ha-Na;Kwak, Ah-Won;Kim, Eunae;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • As one of the major types of lung cancer, non-small cell lung cancer (NSCLC) accounts for the majority of cancer-related deaths worldwide. Treatments for NSCLC includes surgery, chemotherapy, and targeted therapy. Among the targeted therapies, resistance to inhibitors of the epidermal growth factor receptor (EGFR) is common and remains a problem to be solved. MET (hepatocyte growth factor receptor) amplification is one of the major causes of EGFR-tyrosine kinase inhibitor (TKI) resistance. Therefore, there exists a need to find new and more efficacious therapies. Deoxypodophyllotoxin (DPT) extracted from Anthriscus sylvestris roots exhibits various pharmacological activities including anti-inflammation and anti-cancer effects. In this study we sought to determine the anti-cancer effects of DPT on HCC827GR cells, which are resistant to gefitinib (EGFR-TKI) due to regulation of EGFR and MET and their related signaling pathways. To identify the direct binding of DPT to EGFR and MET, we performed pull-down, ATP-binding, and kinase assays. DPT exhibited competitive binding with ATP against the network kinases EGFR and MET and reduced their activities. Also, DPT suppressed the expression of p-EGFR and p-MET as well as their downstreat proteins p-ErbB3, p-AKT, and p-ERK. The treatment of HCC827GR cells with DPT induced high ROS generation that led to endoplasmic-reticulum stress. Accordingly, loss of mitochondrial membrane potential and apoptosis by multi-caspase activation were observed. In conclusion, these results demonstrate the apoptotic effects of DPT on HCC827GR cells and signify the potential of DPT to serve as an adjuvant anti-cancer drug by simultaneously inhibiting EGFR and MET.