• Title/Summary/Keyword: multi-cells

Search Result 840, Processing Time 0.033 seconds

Smart Surface Texturing Implant Stem for Enhancement of Osteoblast Cell Biocompatibility (골육세포 성장 촉진을 위한 스마트 써피스 텍스처링 임플란트 스템 제작 기술)

  • Kim, Kyunghan;Lee, Jaehoon;Park, Jongkweon;Jin, Sukwon;Choi, Wanhae;Lee, Hongjin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.375-380
    • /
    • 2014
  • To enhance biocompatibility between the orthopedic implant stem and obsteoblast cells, bone-forming cells, micro-size holes are patterned in Ti plate surface. Initially, the house built laser power stabilization system is applied to the laser micro patterning machine to convince repeatable result. Various pulse widths are irradiated Ti plate and relationship between diameters of patterned holes and pulsed width is derived. Effect of multi pulse is observed and optimal pulse number is considered to avoid heat affected zone. After MG-63 osbeoblast cells are cultured, micro patterned Ti plates are compared with control plates. In SEM image, cells are well aligned and aggregation is observed in both 60, and $100{\mu}m$ patterned plates. Finally, free form surface stem model is prepared to test micro hole patterning.

Experimental Study of Natural Convection Due to Combined Buoyancy in a Rectangular Enclosure (직각 밀폐용기내의 복합부력에 의한 자연대류에 관한 실험적 연구)

  • 이진호;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.247-256
    • /
    • 1986
  • An experimental investigation was conducted to study natural convection due to temperature and concentration differences between the two opposite end walls of a rectangular enclosure of aspect ratio 0.2. Flow motion in the enclosure appears as a uni-cell flow pattern for the relatively lower concentration and higher temperature differences and vice versa, while it appears as a multicell flow pattern for the comparable temperature and concentration differences. In the multi-cell flow regime, when the cellular flow motiion is very slow, vertical temperature differences within the cells are negligible while the vertical concentration differences are large. In addition, both the temperature and concentration differences are negligible across the interface between the slowly moving cells. For the fast moving cellular flow motion, on thel contrary, vertical temperature differences within the cells are large while the vertical concentration differences are negligible. In this case, temperature differences are negligible and the concentration differences are large across the interface between the fase moving cells.

Current Status of Thin Film Silicon Solar Cells for High Efficiency

  • Shin, Chonghoon;Lee, Youn-Jung;Park, Jinjoo;Kim, Sunbo;Park, Hyeongsik;Kim, Sangho;Jung, Junhee;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.113-121
    • /
    • 2017
  • The researches on the silicon-based thin films are being actively carried out. The silicon-based thin films can be made as amorphous, microcrystalline and mixed phase and it is known that the optical bandgap can be controlled accordingly. They are suitable materials for the fabrication of single junction, tandem and triple junction solar cells. It can be used as a doping layer through the bonding of boron and phosphorus. The carbon and oxygen can bond with silicon to form a wide range of optical gap. Also, The optical gap of hydrogenated amorphous silicon germanium can be lower than that of silicon. By controlling the optical gaps, it is possible to fabricate multi-junction thin film silicon solar cells with high efficiencies which can be promising photovoltaic devices.

Beamforming Strategy Using Adaptive Beam Patterns and Power Control for Common Control Channel in Hierarchical Cell Structure Networks

  • You, Cheol-Woo;Jung, Young-Ho;Cho, Sung-Hyun
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.319-326
    • /
    • 2011
  • Beamforming techniques have been successfully utilized for traffic channels in order to solve the interference problem. However, their use for control channels has not been sufficiently investigated. In this paper, a (semi-) centralized beamforming strategy that adaptively changes beam patterns and controls the total transmit power of cells is proposed for the performance enhancement of the common channel in hierarchical cell structure (HCS) networks. In addition, some examples of its practical implementation with low complexity are presented for two-tier HCS networks consisting of macro and pico cells. The performance of the proposed scheme has been evaluated through multi-cell system-level simulations under optimistic and pessimistic interference scenarios. The cumulative distribution function of user geometry or channel quality has been used as a performance metric since in the case of common control channel the number of outage users is more important than the sum rate. Simulation results confirm that the proposed scheme provides a significant gain compared to the random beamforming scheme as well as conventional systems that do not use the proposed algorithm. Finally, the proposed scheme can be applied simultaneously to several adjacent macro and pico cells even if it is designed primarily for the pico cell within macro cells.

A meshfree adaptive procedure for shells in the sheet metal forming applications

  • Guo, Yong;Wu, C.T.;Park, C.K.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the centroids of the adaptive cells and their shape functions are computed using a first-order generalized meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on this concept, a multi-level refinement procedure is developed which does not require the constraint equations to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree approximation with least computational cost. Two numerical examples are presented to demonstrate the performance of the proposed method in the adaptive shell analysis.

Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells

  • Ji-Sun Lee;Ho-Young Lee
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.266-275
    • /
    • 2024
  • Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.

Comparison of Efficiency of Self-renewal and Differentiation Potential in Tendon-derived Mesenchymal Stem Cells Isolated by Magnetic-activated Cell Sorting Method or Colony Picking Method (자기 활성 세포 분리법과 군체 분리법으로 분리된 건 줄기세포의 자가 재생 능력 및 분화능 효율 비교)

  • Lee, Moses;Choi, Yoorim;Yoon, Dong Suk;Lee, Jin Woo;Yoon, Gil Sung;Choi, Woo Jin;Han, Seung Hwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.3
    • /
    • pp.100-107
    • /
    • 2014
  • Purpose: The purpose of this study is to evaluate the efficacy of mesenchymal stem cell (MSC) isolation by the magnetic-activated cell sorting (MACS) method in tendon tissue-derived cells compared to the colony picking method for isolation of MSCs by picking colony-forming cells. Materials and Methods: Human tendon-derived cells were isolated by enzyme digestion using normal tendon tissues from three donors. We used the magnetic kit and well-known MSC markers (CD90 or CD105) to isolate MSCs in tendon-derived cells using MACS. Cloning cylinders were used to isolate colony-forming cells having MSC characteristics in tendon-derived cells. Colony-forming unit-fibroblast (CFU-F) assay was used to evaluate the self-renewal capacity of cells isolated using the colony picking method or MACS. For comparison of differentiation potentials into osteogenic or adipogenic lineage between two groups, alizarin red S and oil red O staining were performed at 14 days after induction of differentiation in vitro. Results: Flow cytometry results showed that early passage tendon-derived cells expressed CD44 in 99.13%, CD90 in 56.51%, and CD105 in 86.19%. In the CFU-F assay, CD90+ or CD105+ cells isolated with MACS showed larger colony formation in size than cells isolated using the colony picking method. We also observed that CD90+ or CD105+ cells were constantly differentiated into both osteogenic and adipogenic lineages in cells from all donors, whereas cells isolated using the colony picking method were heterogeneous in differentiation potentials to the osteogenic and adipogenic lineages. Conclusion: CD90+ or CD105+ cells isolated using MACS showed superior MSC characteristics in the self-renewal and multi-differentiation capacities compared with cells isolated using the colony picking method.

Anti-oxidant Effects of the Water Extracts from the Inonotus Obliquus against Cisplatin- Induced Damage in HEI-OC1 Cells (차가버섯 물 추출물의 cisplatin에 의해 유도된 HEI-OC1세포 손상에 대한 항산화효과)

  • Youn, Myung-Ja;O, Kwang-Joong;Park, Kie-In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.451-458
    • /
    • 2011
  • The medicinal mushroom Inonotus obliquus is a traditional and widely used multi-functional fungus. In this study, we have investigated whether Inonotus obliquus (Chaga mushroom) extracts exerts anti-oxidant effects on cisplatin-induced cytotoxicity in auditory cell line, HEI-OC1 cells. First of all, Chaga extracts has no harmful effects on viability of HEI-OC1 cells in the dose range of $65{\sim}125{\mu}g/m{\ell}$. Moreover, it shows cyto-protective effects on the cells treated with cisplatin-induced cytotoxicity in HEI-OC1 cells and the damage of hair cells arrays of the rat primary organ of Corti explants in the presence of cisplatin. Pretreatment with Chaga extracts inhibited the cell death, reactive oxygen species generation (ROS), lipid peroxidation induced by cisplatin. These effects were associated with the induction of antioxidant enzyme by Chaga extracts. We further investigated the effects of Chaga extracts on expression of antioxidant enzymes such as Cu, Zn superoxide dismutase (SOD 1) and Mn SOD (SOD 2) by RT-PCR. In addition, Chaga extracts shows SOD activity and SOD protein expression in cisplatin treated group induced similar to control group. Taken together, these results indicate that Chaga extracts can prevent cisplatin-induced cytotoxicity by radical-scavenging activity (SOD activity) in HEI-OC1 cells. It might be an effective as antioxidant and further studies on the chemo-preventive mechanisms of Inonotus obliquus are needed.

Characterization of multipotent mesenchymal stem cells isolated from adipose tissue and bone marrow in pigs (돼지 지방 조직 및 골수 유래 성체줄기세포의 성상분석과 다능성에 관한 연구)

  • Lee, Ah-Young;Choe, Gyeong-Im;Nah, Jin-Ju;So, ByungJae;Lee, Kyung-Woo;Chang, Ki-Yoon;Song, Jae-Young;Cha, Sang-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Mesenchymal stem cells (MSCs) have ability to differentiate into multi-lineage cells, which confer a great promise for regenerative medicine to the cells. The aim of this study was to establish a method for isolation and characterization of adipose tissue-derived MSC (pAD-MSC) and bone marrow-derived MSC (pBM-MSC) in pigs. Isolated cells from all tissues were positive for CD29, CD44, CD90 and CD105, but negative for hematopoietic stem cell associated markers, CD45. In addition, the cells expressed the transcription factors, such as Oct4, Sox2, and Nanog by RT-PCR. pAD-MSC and pBM-MSC at early passage successfully differentiated into chondrocytes, osteocytes and adipocytes. Collectively, pig AD-MSC and BM-MSC with multipotency were optimized in our study.

Anti-inflammatory activity of Kyungok-go on Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Hyun-Suk Song;Ji-Yeong An;Jin-Young Oh;Dong-Uk Kim;Bitna Kweon;Sung-Joo Park;Gi-Sang Bae
    • The Journal of Korean Medicine
    • /
    • v.43 no.4
    • /
    • pp.20-32
    • /
    • 2022
  • Objectives: Kyungok-go (KOG) is a traditional multi-herbal medicine commonly used for enforcing weakened immunity for long time. Recently, there are several reports that KOG has anti-inflammatory and immuno-stimulatory activities in many experimental models. However, the protective effects of KOG on neuronal inflammation are still undiscovered. Thus, we investigated the neuro-protective activity of KOG on lipopolysaccharide (LPS)-stimulated mouse microglia cells. To find out KOG's anti-neuroinflammatory effects on microglial cells, we examined the production of nitrite using griess assay, and mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α using real time RT-PCR. In addition, to examine the regulating mechanisms of KOG, we investigated the protein expression of mitogen-activated protein kinases (MAPKs) and Iκ-Bα by western blot. KOG inhibited the elevation of nitrite, iNOS and COX-2 on LPS-stimulated BV2 cells. Also, KOG significantly inhibited the pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α on LPS-stimulated BV2 microglial cells. Moreover, KOG inhibited the activation of c-Jun N-terminal kinase (JNK), P38 and degradation of Iκ-Bα but not the activation of extracellular signal regulated kinase (ERK) on LPS-stimulated BV2 microglial cells. These results showed KOG has the anti-inflammatory effects through the inhibition on nitrite, iNOS, COX-2, IL-1β, IL-6, and TNF-α via the deactivation of JNK, p38 and nuclear factor (NF)-κB on LPS-stimulated BV2 microglial cells. Thereby, KOG could offer the new and promising treatment for neurodegenerative disease related to neuroinflammation.