• Title/Summary/Keyword: multi-cells

Search Result 840, Processing Time 0.036 seconds

A Pseudo-Random Beamforming Technique for Time-Synchronized Mobile Base Stations with GPS Signal

  • Son, Woong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2018
  • This paper proposes a pseudo-random beamforming technique for time-synchronized mobile base stations (BSs) for multi-cell downlink networks which have mobility. The base stations equipped with multi-antennas and mobile stations (MSs) are time-synchronized based on global positioning system (GPS) signals and generate a number of transmit beamforming matrix candidates according to the predetermined pseudo-random pattern. In addition, MSs generate receive beamforming vectors that correspond to the beam index number based on the minimum mean square error (MMSE) using transmit beamforming vectors that make up a number of transmit beamforming matrices and wireless channel matrices from BSs estimated via the reference signals (RS). Afterward, values of received signal-to-interference-plus-noise ratio (SINR) with regard to all transmit beamforming vectors are calculated, and the resulting values are then feedbacked to the BS of the same cells along with the beam index number. Each of the BSs calculates each of the sum-rates of the transmit beamforming matrix candidates based on the feedback information and then transmits the calculated results to the BS coordinator. After this, optimum transmit beamforming matrices, which can maximize a sum-rate of the entire cells, are selected at the BS coordinator and informed to the BSs. Finally, data signals are transmitted using them. The simulation results verified that a sum-rate of the entire cells was improved as the number of transmit beamforming matrix candidates increased. It was also found that if the received SINR values and beam index numbers are feedbacked opportunistically from each of the MSs to the BSs, not only nearly the same performance in sum-rate with that of applying existing feedback techniques could be achieved but also an amount of feedback was significantly reduced.

Computational Fluid Dynamics Study on Uniform Cooling of Polymer Electrolyte Membrane Fuel Cells by Parallel Multi-pass Serpentine Flow Fields (병렬 사형유로를 채택한 냉각판을 통한 고분자 전해질 연료전지의 균일 냉각에 대한 전산유체역학 해석 연구)

  • Yu, Seung-Ho;Baek, Seung-Man;Nam, Jin-Hyun;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.885-891
    • /
    • 2010
  • Thermal management is important for enhancing the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) and is taken into account in the design of PEMFCs. In general, cooling pates with circulating liquid coolant (water) are inserted between several unit cells to exhaust the reaction heat from PEMFCs. In this study, computational fluid dynamics (CFD) simulations were performed to characterize the uniform cooling performance of parallel multipass serpentine flow fields (MPSFFs) that were used as coolant flow channels in PEMFCs. The cooling performances of conventional serpentine and parallel flow fields were also evaluated for the purpose of comparison. The CFD results showed that the use of parallel MPSFFs can help reduce the temperature nonuniformity, and thus, can favorably enhance the performance and durability of PEMFCs.

Shear lag effect of varied sectional cantilever box girder with multiple cells

  • Guo, Zengwei;Liu, Xinliang;Li, Longjing
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.295-310
    • /
    • 2022
  • This paper proposes a modified bar simulation method for analyzing the shear lag effect of variable sectional box girder with multiple cells. This theoretical method formulates the equivalent area of stiffening bars and the allocation proportion of shear flows in webs, and re-derives the governing differential equations of bar simulation method. The feasibility of the proposed method is verified by the model test and finite element (FE) analysis of a simply supported multi-cell box girder with constant depth. Subsequently, parametric analysis is conducted to explore the mechanism of shear lag effect of varied sectional cantilever box girder with multiple cells. Results show that the shear lag behavior of variable box-section cantilever box girder is weaker than that of box girder with constant section. It is recommended to make the gradient of shear flow in the web with respect to span length vary as smoothly as possible for eliminating the shear lag effect of box girder. An effective countermeasure for diminishing shear lag effect is to increase the number of box chambers or change the variation manner of bridge depth. The shear lag effect of varied sectional cantilever box girder will get more server when the length of central flanges is shorter than 0.26 or longer than 0.36 times of total width of top flange, as well as the cantilever length exceeds 0.29 times of total length of box's flange. Therefore, the distance between central webs can adjust the shear lag effect of box girder. Especially, the width ratio of cantilever plate with respect to total length of top flange is proposed to be no more 1/3.

Design of Small-Area MTP Memory Based on a BCD Process (BCD 공정 기반 저면적 MTP 설계)

  • Soonwoo Kwon;Li Longhua;Dohoon Kim;Panbong Ha;Younghee Kim
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.78-89
    • /
    • 2024
  • PMIC chips based on a BCD process used in automotive semiconductors require multi-time programmable (MTP) intellectual property (IP) that does not require additional masks to trim analog circuits. In this paper, MTP cell size was reduced by about 18.4% by using MTP cells using PMOS capacitors (PCAPs) instead of NMOS capacitors (NCAPs) in MTP cells, which are single poly EEPROM cells with two transistors and one MOS capacitor for small-area MTP IP design. In addition, from the perspective of MTP IP circuit design, the two-stage voltage shifter circuit is applied to the CG drive circuit and TG drive circuit of MTP IP design, and in order to reduce the area of the DC-DC converter circuit, the VPP (=7.75V), VNN (=-7.75V) and VNNL (=-2.5V) charge pump circuits using the charge pumping method are placed separately for each charge pump.

Fabrication of Biofuel Cell Roll Using Flexible CNT Nanosheet Substrate (유연한 CNT Nanosheet 기판을 이용한 생체연료전지 Roll 제작)

  • Sung, Jungwoo;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.388-391
    • /
    • 2014
  • The most promising application of the biofuel cells is implantable devices, so the biofuel cells should have an appropriate shape for the vascular vessel. We demonstrated the biofuel cell roll for using in tubes. MWNTs were aggregated by vacuum filtration on a nitrocellulose membrane filter, which was biocompatible and flexible. The MWNT aggregated nitrocellulose membrane used the electrodes of the biofuel cells because it was conductive as well as nanostuructured. Then, the membrane was rolled into the roll shape. The maximum power density of the biofuel cell roll was $7.9{\mu}W/cm^2$ at 153mV and 50 mM glucose. Also, the power density is expected to increase in its practical application if there is flow in the tube, which makes the transportation of fuel easy. The biofuel cell roll contacts with the wall of the tube, so flow in the tube does not disturb. Also, the biofuel cell roll has multi-layers offering more electroactive area.

Development of High Performance Photoelectrode Paste Doped Glass Powder for Dye-sensitized Solar Cells (염료감응형 태양전지용 유리분말이 함유된 고효율 광전극 페이스트 개발)

  • Zhao, Xing Guan;Jin, En Mei;Gua, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.427-431
    • /
    • 2011
  • Hybrid $SiO_2-TiO_2$ photoelectrode with different type of layers was investigated in dye-sensitized solar cells (DSSC). Use of a thin layer of nanocrystalline $TiO_2$ would imply reduction in the amount of dye coverage, however, lower amount of dye in the thin films would imply fewer electron generation upon illumination. So, thus, it becomes necessary to include a $SiO_2-TiO_2$ layer for increase light harvesting effect such that the lower photon conversion due to thin layer could be compensated. In this paper reports the use of transparent high surface area $TiO_2$ layer and an additional $SiO_2-TiO_2$ layer, thus ensuring adequate light harvesting in these devices. The best solar conversion efficiency 6.6% under AM 1.5 was attained with a multi-layer structure using $TiO_2$ layer/$SiO_2-TiO_2$ layer/$TiO_2$ layer for the light harvesting and this had resulted to about 44% increase in photocurrent density of dye-sensitized solar cells.

Optimization of Bismuth-Based Inorganic Thin Films for Eco-Friend, Pb-Free Perovskite Solar Cells (친환경 Pb-Free 페로브스카이트 태양전지를 위한 비스무스 기반의 무기 박막 최적화 연구)

  • Seo, Ye Jin;Kang, Dong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.117-121
    • /
    • 2018
  • Perovskite solar cells have received increasing attention in recent years because of their outstanding power conversion efficiency (exceeding 22%). However, they typically contain toxic Pb, which is a limiting factor for industrialization. We focused on preparing Pb-free perovskite films of Ag-Bi-I trivalent compounds. Perovskite thin films with improved optical properties were obtained by applying an anti-solvent (toluene) washing technique during the spin coating of perovskites. In addition, the surface condition of the perovskite film was optimized using a multi-step thermal annealing treatment. Using the optimized process parameters, $AgBi_2I_7$ perovskite films with good absorption and improved planar surface topography (root mean square roughness decreased from 80 to 26 nm) were obtained. This study is expected to open up new possibilities for the development of high performance $AgBi_2I_7$ perovskite solar cells for applications in Pb-free energy conversion devices.

Roles of GST-π and polβ Genes in Chemoresistance of Esophageal Carcinoma Cells

  • Tang, Yue;Xuan, Xiao-Yan;Li, Min;Dong, Zi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7375-7379
    • /
    • 2013
  • The main aim of this study was to investigate the roles of GST-${\pi}$ and $pol{\beta}$ genes in the chemoresistance of esophageal carcinoma cells. Eukaryotic expression vectors containing each gene were constructed and transfected into EC9706 cells, and the biological effects of the two genes assessed based on a resistance index. We additionally investigated the in vitro and in vivo anti-resistance effects of GST-${\pi}$ and $pol{\beta}$ genes using recombinant lentiviruses carrying siRNAs against the two genes. Our results showed that upregulation of GST-${\pi}$ and $pol{\beta}$ genes suppresses chemosensitivity of esophageal carcinoma cells to cisplatin, while downregulation of these two genes with RNAi technology reverses this chemoresistance. Multi-site injection of recombinant lentivirus targeting the GST-${\pi}$ gene into transplanted cDDP tumors effectively reversed their chemoresistant phenotype. However, the same treatment against the $pol{\beta}$ gene did not lead to significant efficacy against chemoresistance.

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

CYTOTOXICITY OF DENTIN BONDING SYSTEM ON L929 CELLS (상아질 결합제의 L929 세포 독성에 관한 연구)

  • Im, Mi-Kyung;Ji, Jung-Ho;Kim, Sang-Seop
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.209-219
    • /
    • 1997
  • The research of the dentin bonding system was mainly on the chemistry and bonding strength. And in vitro assessement of biocompatibility of dentin bonding system was not completely developed. The purpose of this study was to evaluate the cytotoxic effect of several dentin primers. Scotchbond Multi-Purpose (3M Dental Products. USA). Gluma (BayerDental. Germany). All-Bond (Bisco. USA). ProBond (CaulkDensply, USA) and VeridonFil (Dongyang Nylon. Korea) were included. Cytotoxicity was tested using MTT cell viability test. 0.5 ul. 1 ul. 2 ul and 10 ul of each primer were added to the 96 well plate of incubated L929 cell lines. After 30-minute. 1. 4. 24 and 72-hour exposures. absorbance of L929 cells was observed with ELISA reader. All data were analyzed using t-test. All primers showed cytotoxicity on L929 cells under every conditions used in this study. Absorbance of L929 cells was decreased by time. Scotch bond group exhibited the lowest absorbance value in all exposure time and value.

  • PDF