• Title/Summary/Keyword: multi-cells

Search Result 840, Processing Time 0.036 seconds

Analysis for Performance Deviation of Individual Cells in a Multi-Cell Test System for Rapid-Screening of Electrode Materials in PEMFCs (고분자전해질 연료전지용 전극물질의 빠른 스크리닝을 위한 멀티셀 테스트 시스템에서 개별셀의 성능편차에 대한 분석)

  • Zhang, Yan;Lee, Ji-Jung;Park, Gyung-Se;Lee, Hong-Ki;Shim, Joong-Pyo
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.842-851
    • /
    • 2011
  • A multi-cell test system with 25 independent cells is used to test different electrode materials simultaneously for polymer electrolyte membrane fuel cells (PEMFCs). Twenty-five segmented membrane electrode assemblies (MEAs) having the same or different Pt-loading are prepared to analyze the performance deviation of cells in the multi-cell test system. Improvements in the multi-cell test system are made by ensuring that the system performs voltage sensing for the cells individually and inserting optimum gaskets between the MEAs and the graphite plates. The cell performances are improved and their deviations are significantly decreased by these modifications. The performance deviations changed according to various cell configurations because the operating conditions of the cells, such as the gas flow and concentration, differed. This cell system can be used to test multiple electrodes simultaneously because it shows relatively uniform performance under the same conditions as well as linear correlation with various catalyst loadings.

The Role of Stem Cells and Gap Junctional Intercellular Communication in Carcinogenesis

  • Trosko, James E.
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • Understanding the process of carcinogenesis will involve both the accumulation of many scientific facts derived from molecular, biochemical, cellular, physiological, whole animal experiments and epidemiological studies, as well as from conceptual understanding as to how to order and integrate those facts. From decades of cancer research, a number of the "hallmarks of cancer" have been identified, as well as their attendant concepts, including oncogenes, tumor suppressor genes, cell cycle biochemistry, hypotheses of metastasis, angiogenesis, etc. While all these "hallmarks" are well known, two important concepts, with their associated scientific observations, have been generally ignored by many in the cancer research field. The objective of the short review is to highlight the concept of the role of human adult pluri-potent stem cells as "target cells" for the carcinogenic process and the concept of the role of gap junctional intercellular communication in the multi-stage, multi-mechanism process of carcinogenesis. With these two concepts, an attempt has been made to integrate the other well-known concepts, such as the multi-stage, multi-mechanisn or the "initiation/promotion/progression" hypothesis; the stem cell theory of carcinogenesis; the oncogene/tumor suppression theory and the mutation/epigenetic theories of carcinogenesis. This new "integrative" theory tries to explain the well-known "hallmarks" of cancers, including the observation that cancer cells lack either heterologous or homologous gap junctional intercellular communication whereas normal human adult stem cells do not have expressed or functional gap junctional intercellular communication. On the other hand, their normal differentiated, non-stem cell derivatives do express connexins and express gap junctional intercellular communication during their differentiation. Examination of the roles of chemical tumor promoters, oncogenes, connexin knock-out mice and roles of genetically-engineered tumor and normal cells with connexin and anti-sense connexin genes, respectively, seems to provide evidence which is consistent with the roles of both stem cells and gap junctional communication playing a major role in carcinogenesis. The integrative hypothesis provides new strategies for chemoprevention and chemotherapy which focuses on modulating connexin gene expression or gap junctional intercellular communication in the premalignant and malignant cells, respectively.

Buried Contact Solar Cells using Tri-crystalline Silicon Wafer

  • Lee Soo-Hong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.29-33
    • /
    • 2003
  • Tri-crystalline silicon wafers have three different orientations and three-grain boundaries. In this paper, tri-crystalline silicon (tri-Si) wafers have been used for the fabrication of buried contact solar cells. The optical and micro-structural properties of these cells after texturing in KOH solution have been investigated and compared with those of cast mult- crystalline silicon (multi-Si) wafers. We employed a cost effective fabrication process and achieved buried contact solar cell (BCSC) energy conversion efficiencies up to $15\%$ whereas the cast multi-Si wafer has efficiency around $14\%$.

Improvement of the Accuracy of Optical Simulation Using by the Multi-cube UV Source in PDP Cells (Multi-cube UV source 이용한 PDP에서 광학시뮬레이션의 정확성 개선에 관한 연구)

  • Kang, Jung-Won;Eom, Chul-Whan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.41-44
    • /
    • 2007
  • Optical simulation of the rear and front panel geometries were needed to improve the luminance and efficiency in PDP cells. The 3-dimensional optical code can be used to analyze the variation of geometries and changing of optical properties. In order to improve the accuracy of simulated results, a new UV source, called a multi-cubes UV source, was designed. To design the source, at first UV distribution was calculated with the plasma fluid code and then the UV distribution was transformed to the multi-cube structures in the optical code. Compared to the results from existing UV source, called a planar UV source, could be improved the accuracy of visible light distribution. Simulated results were also compared to the visible distribution measured with the ICCD in a real PDP cell.

  • PDF

Effects of Vinorelbine on Cisplatin Resistance Reversal in Human Lung Cancer A549/DDP Cells

  • Zhou, Yu-Ting;Li, Kun;Tian, Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4635-4639
    • /
    • 2013
  • Multi-drug resistance (MDR) is an essential aspect of human lung cancer chemotherapy failure. Recent studies have shown that vinorelbine is involved in underlying processes in human tumors, reversing the MDR inseveral types of cancer cells. However, the roles and potential mechanism are not fully clear. In this study, we explored effects of vinorelbine in multi-drug resistance reversal of human lung cancer A549/DDP cells. We found that vinorelbine increased drug sensitivity to cisplatin and intracellular accumulation of rhodamine-123, while decreasing expression of P-glycoprotein (P-gp), multi-drug resistance-associated protein (MRP1) and glutathione-S-transferase ${\pi}$ (GST-${\pi}$) in A549/DDP cells. At the same time, we also established downregulation of p-Akt and decreased transcriptional activation of NF-${\kappa}B$ and twist after vinorelbine treatment. The results indicated that vinorelbine might be used as a potential therapeutic strategy in human lung cancer.

Solar Cells - the Energy Source for Earth & the beginning of Space Exploration (태양전지-지구 에너지원이자 우주항해의 시작)

  • Han, Il Ki
    • Vacuum Magazine
    • /
    • v.1 no.4
    • /
    • pp.4-9
    • /
    • 2014
  • About 170 years has been passed since the concept of photovoltaic has been suggested by French physicist Alexandre-Edmond Becquerel. Now the highest efficiency of solar cell has reached up to 44% by III-V multi-junction solar cells with concentrator. Those multi-junction solar cells are suitable as energy source for spaceships. On the other hand, the cell efficiency of solar cell for electric power generation as energy source for Earth has is going to be saturated although commercial solar cell efficiency is around 20%. In the part 1 of this article, the history of III-V multi-junction solar cells which have been adapted for spaceships is explained and in the part 2, new approach for the improvement of cell efficiency is suggested as the energy source for Earth.

Polyamines in Multi-drug Resistant Cancer Cells (다제 내성 암세포에서의 Polyamine 특성)

  • 권혁영;이종호;이동권
    • Biomolecules & Therapeutics
    • /
    • v.5 no.3
    • /
    • pp.265-271
    • /
    • 1997
  • Since the advent of chemotherapy, certain types of cancer have been particularly resistant to chemotherapeutic treatment. One of the most well-studied types of resistance is resistance to multiple struc-turally dissimialr hydrophobic chemotherapeutic agents, or multidrug resistance (MDR). We found that MDR cells (KBV20C, KB7D) being highly resistant to colchicine, etoposide, and vincristine were found to have very low level of putrescine and low level of spermidine than the drug sensitive parental cells (KB) but they had almost same level of spermine as the drug sensitive cells. Although both MDR and drug sensitive cells had almost same rate of polyamine uptake, MDR cells were much more sensitive to an inhibitor of polyamine synthesis, methylglyoxal-bis guanylhydrazone (MGBG), suggesting that MDR cells might be defective in polyamine synthesis. These results also suggest that HGBG can be used for treatment of MDR in vivo.

  • PDF

Classification and Ultrastructure of Hemocytes in the Tunicate Halocynthia roretzi (Ascidiacea: Pyuridae) (멍게(Halocynthia roretzi) 혈구의 종류와 미세구조)

  • Shin, Yun Kyung;Jun, Je Cheon;Son, Maeng Hyun;Kim, Hyejin;Lee, Jung Sick
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.5
    • /
    • pp.480-485
    • /
    • 2012
  • The hemocytes of the tunicate Halocynthia roretzi are classified into six types based on their size, cellular form, and fine structure of the cytoplasmic granules: hyalinocytes, granulocytes, phagocytes, nephrocytes, morula cells, and multi-vacuole cells. Based on cell size, they are ordered multi-vacuole cells ($7.5{\mu}m$)>nephrocytes ($7.1{\mu}m$)>phagocytes ($6.8{\mu}m$)>granulocytes ($6.1{\mu}m$)>morula cells ($5.7{\mu}m$)>hyalinocytes ($5.4{\mu}m$). The proportion of hemocytes is ranked in the order multi-vacuole cells (54.8%)>nephrocytes (16.9%)>granulocytes (9.9%)>morula cells (8.8%)>phagocytes (6.1%)>hyalinocytes (3.5%).

Spatio-temporal Load Forecasting Considering Aggregation Features of Electricity Cells and Uncertainties in Input Variables

  • Zhao, Teng;Zhang, Yan;Chen, Haibo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.

An Efficient SLC Transition Method for Improving Defect Rate and Longer Lifetime on Flash Memory (플래시 메모리 상에서 불량률 개선 및 수명 연장을 위한 효율적인 단일 비트 셀 전환 기법)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.81-86
    • /
    • 2023
  • SSD (solid state disk), which is flash memory-based storage device, has the advantages of high density and fast data processing. Therefore, it is being utilized as a storage device for high-capacity data storage systems that manage rapidly increasing big data. However, flash memory, a storage media, has a physical limitation that when the write/erase operation is repeated more than a certain number of times, the cells are worn out and can no longer be used. In this paper, we propose a method for converting defective multi-bit cells into single-bit cells to reduce the defect rate of flash memory and extend its lifetime. The proposed idea distinguishes the defects and treatment methods of multi-bit cells and single-bit cells, which have different physical characteristics but are treated as the same defect, and converts the expected defective multi-bit cells into single-bit cells to improve the defect rate and extend the overall lifetime. Finally, we demonstrate the effectiveness of our proposed idea by measuring the increased lifetime of SSD through simulations.