• Title/Summary/Keyword: multi-cable

Search Result 281, Processing Time 0.022 seconds

Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

  • Elawady, Amal;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.71-88
    • /
    • 2018
  • At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.

Development of a High Value Added Knit Structure for Middle-aged Women (중년여성을 위한 고부가가치 니트 조직 개발)

  • Lee, Insuk;Kim, Jiyoung
    • Journal of Fashion Business
    • /
    • v.18 no.2
    • /
    • pp.148-165
    • /
    • 2014
  • The purpose of this study is to establish a theory about the necessary structure for knitwear design, and to propose it with the practical data through the actual development of a high value added knit structure. For this study, the market was conducted along with literature reviews on the existing studies and the relevant books about knit structures. The market research aimed at the products released in the spring/summer and fall/winter seasons of 2012-2013, focusing on brand for middle aged women. The utilization of the structure by item and the characteristics of knit design were studied. The research was conducted on S/S products in May and July, and F/W products in October and December. As a result of the market research, it was shown that the lightweight structures with permeability such as plain, lace, links and links, this is repeated and rib structure were frequently utilized during the S/S season, while double structures with good shape stability were greatly utilized during the F/W season. Also, during the F/W season, a cable structure and tubular jacquard that emphasized the volume or cubic effect were frequently used, and there were many jacquard structures where a change of color sense and motive were added. Concerning the knit structures development, the researcher designed the knit structure at the actual production site of the knit fashion. A total of 5 pieces of knit structures were developed by asking a professional for programming and knitting. To the developed structures, the study added a multi-gauged effect, herringbone transformation effect, 3-dimensional surface effect, color effects, geometric patterns, lace penetration effect, and soft surface effect in a water-drop shape. In addition, the structures had differences in the added values by mixing various structures and diversely expressing color sense on the knitting line. This study proposes the direction for 21st century knitwear product design, through the development of a high value added knit structure.

Design and Trend Analysis According to the Application Field of Monopole Antenna with Sleeve Structure (슬리브 구조를 갖는 모노폴 안테나의 활용분야에 따른 설계와 동향분석)

  • Kang, Sang-Won;Byeon, Mi-Kyeong;Lee, Shin-Hee;Choe, Gwang-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.135-141
    • /
    • 2020
  • This paper summarizes the data of a monopole antenna with a sleeve structure that can be applied in various ways. Sleeve monopole antennas have broadband characteristics and are used for multi-frequency applications. The sleeve monopole antenna is composed of a vertical conductor, which is a radiator, and a sleeve having the same structure as a coaxial cable. The sleeve acts as a radiator and an open stub. The length of the sleeve should be 1/3~2/3 of the total length of the antenna. A monopole antenna having a sleeve structure is applicable to a vehicle wiper antenna. In addition, the case of applying this antenna to a broadband sleeve antenna using a loading coil, a broadband printed sleeve monopole antenna for an ISM band, a gap sleeve and a double sleeve, and a UWB planar monopole antenna using half cutting was summarized and analyzed in terms of structure and broadband.

Mechanical, thermal and electrical properties of polymer nanocomposites reinforced with multi-walled carbon nanotubes (다층카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성)

  • Kook, J.H.;Huh, M.Y.;Yang, H.;Shin, D.H.;Park, D.H.;Nah, C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.215-216
    • /
    • 2007
  • Semiconducting layers are thin rubber film between electrical cable wire and insulating polymer layers having a volume resistivity of ${\sim}10^2{\Omega}cm$. A new semiconducting material was suggested in this study based on the carbon nanotube(CNT)-reinforced polymer nanocomposites. CNT-reinforced polymer nanocomposites were prepared by solution mixing with various polymer type and dual filler system. The mechanical, thermal and electrical properties were investigated as a function of polymer type and dual filler system based on CNT and carbon black. The volume resistivity of composites was strongly related with the crystallinity of polymer matrix. With decreased crystallinity, the volume resistivity decreased linearly until a critical point, and it remained constant with further decreasing the crystallinity. Dual filler system also affected the volume resistivity. The CNT-reinforced nanocomposite showed the lowest volume resistivity. When a small amount of carbon black(CB) was replaced the CNT, the crystallinity increased considerably leading to a higher volume resistivity.

  • PDF

Dynamic Analysis of Floating Bridge Subject to Earthquake Load Considering Multi-Support Excitation (다중지점 가진 효과를 고려한 부유식 교량의 지진응답 해석)

  • 권장섭;백인열;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • Dynamic response analysis is conducted for a floating bridge subjected to multiple support earthquake excitation. The floating bridge used in this study is supported by discrete floating pontoons and horizontal pretension cables supported at both ends of the bridge. The bridge is modeled with finite elements and the hydrodynamic added mass and added damping due to the surrounding fluid around pontoons are obtained using boundary elements. During the analysis the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients. Multiple support excitation is introduced at both ends of the bridge and the time history response is compared to that of a simultaneous excitation. The results show that the multiple support excitation yields larger values in some responses. for example in cable tensions. than the sumultaneous excitation.

Flexible smart sensor framework for autonomous structural health monitoring

  • Rice, Jennifer A.;Mechitov, Kirill;Sim, Sung-Han;Nagayama, Tomonori;Jang, Shinae;Kim, Robin;Spencer, Billie F. Jr.;Agha, Gul;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.423-438
    • /
    • 2010
  • Wireless smart sensors enable new approaches to improve structural health monitoring (SHM) practices through the use of distributed data processing. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While much of the technology associated with smart sensors has been available for nearly a decade, there have been limited numbers of fulls-cale implementations due to the lack of critical hardware and software elements. This research develops a flexible wireless smart sensor framework for full-scale, autonomous SHM that integrates the necessary software and hardware while addressing key implementation requirements. The Imote2 smart sensor platform is employed, providing the computation and communication resources that support demanding sensor network applications such as SHM of civil infrastructure. A multi-metric Imote2 sensor board with onboard signal processing specifically designed for SHM applications has been designed and validated. The framework software is based on a service-oriented architecture that is modular, reusable and extensible, thus allowing engineers to more readily realize the potential of smart sensor technology. Flexible network management software combines a sleep/wake cycle for enhanced power efficiency with threshold detection for triggering network wide operations such as synchronized sensing or decentralized modal analysis. The framework developed in this research has been validated on a full-scale a cable-stayed bridge in South Korea.

Case study of random vibration analysis of train-bridge systems subjected to wind loads

  • Zhu, Siyu;Li, Yongle;Togbenou, Koffi;Yu, Chuanjin;Xiang, Tianyu
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.399-416
    • /
    • 2018
  • In order to reveal the independent relationship between track irregularity and wind loads, the stochastic characteristics of train-bridge coupling systems subjected to wind loads were investigated by the multi-sample calculation. The vehicle was selected as 23 degrees of freedom dynamical model, and the bridge was described by three-dimensional finite element model. It was assumed that the wind loads were random processes with strong spatial correlation, while the track irregularities were stationary random ones. As a case study, a high-speed train running on a cable-stayed bridge subjected to wind loads was studied. The effect of rail irregularities was deemed to be independent of the effect of wind excitations on the coupling system in the same wind circumstance for the same project, leading to the conclusion that the effect of wind loads and moving vehicle could be calculated separately. The variance results of the stochastic responses of vehicle-bridge coupling system under the action of wind loads and rail irregularities together were equivalent to the sum of the variance of the responses induced by each excitation. Therefore, when one of the input excitations is different, only the effect of changed loads needs to be assessed. Moreover, the new calculated results were combined with the effect of unchanged loads to present the stochastic response of coupling system subjected to the different excitations, reducing the cost of computations. The stochastic characteristics, the CFD (cumulative distribution function) of the coupling system with different wind velocities, vehicle speed, and vehicle marshalling were studied likewise.

A generalized adaptive variational mode decomposition method for nonstationary signals with mode overlapped components

  • Liu, Jing-Liang;Qiu, Fu-Lian;Lin, Zhi-Ping;Li, Yu-Zu;Liao, Fei-Yu
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.75-88
    • /
    • 2022
  • Engineering structures in operation essentially belong to time-varying or nonlinear structures and the resultant response signals are usually non-stationary. For such time-varying structures, it is of great importance to extract time-dependent dynamic parameters from non-stationary response signals, which benefits structural health monitoring, safety assessment and vibration control. However, various traditional signal processing methods are unable to extract the embedded meaningful information. As a newly developed technique, variational mode decomposition (VMD) shows its superiority on signal decomposition, however, it still suffers two main problems. The foremost problem is that the number of modal components is required to be defined in advance. Another problem needs to be addressed is that VMD cannot effectively separate non-stationary signals composed of closely spaced or overlapped modes. As such, a new method named generalized adaptive variational modal decomposition (GAVMD) is proposed. In this new method, the number of component signals is adaptively estimated by an index of mean frequency, while the generalized demodulation algorithm is introduced to yield a generalized VMD that can decompose mode overlapped signals successfully. After that, synchrosqueezing wavelet transform (SWT) is applied to extract instantaneous frequencies (IFs) of the decomposed mono-component signals. To verify the validity and accuracy of the proposed method, three numerical examples and a steel cable with time-varying tension force are investigated. The results demonstrate that the proposed GAVMD method can decompose the multi-component signal with overlapped modes well and its combination with SWT enables a successful IF extraction of each individual component.

A Study on Algorithm of the Integrated Communication System in Radio Station (무선국의 통합 시스템에 대한 알고리즘의 연구)

  • 조학현;최조천;김기문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.545-551
    • /
    • 1998
  • The Radio communication by existing SSB, VHF, etc. in a coast station and a base station for military affairs is still used to a very important the device of information delivery or transmitting and receiving by the remote controller to using to the exclusive cable for a equipment established at a long distance. When a number of consumer to connected and operated by a number of transceiver is essential for a circuit controller of ICS, in KOREA, is devoted by import to considerable quantity because of to be delayed development of this field. This Paper has been realized to optimal algorithm and designing of a circuit connection controller by multi-processor to pre-stage for the development of ICS. The H/W is composed able to remote control to circuit connector with the several slave processor and a processor for master, and this has taken possible through without any obstacle to communication circuits of a control signal by FSK system. The S/W make possible monitoring for communication condition of other circuits by means of a serial communication system by the multi-processing. This paper has been studied for connecting to a circuits wished to rapidly and precisely by the full application to a interrupt technique. A technique to control by remote to a number of transceiver is a way increasing to application for a frequency resource of the limited MF/SF, VHF and the existing radio communication technique. According to, this paper will achieve to be the reduction of energy & equipment and multiplicity of information delivery in the general communication and disposal to rapid and exact for the important communication as distress, urgency and safety on the sea.

  • PDF

Analysis and Application of Compact Planar Multi-Loop Self-Resonant Coil of High Quality Factor with Coaxial Cross Section (고품질 계수를 갖는 소형 평판형 동축 단면 다중 루프 자기 공진 코일 해석 및 응용)

  • Son, Hyeon-Chang;Kim, Jinwook;Kim, Do-Hyeon;Kim, Kwan-Ho;Park, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.466-473
    • /
    • 2013
  • In this paper, a compact planar multi-loop self-resonant coil of high quality factor with a coaxial cross section is proposed for effective wireless charging. The proposed coil has high Q-factor and a resonant frequency of a coil can be easily controlled by adjusting distributed capacitance. For designing the coil, a self-inductance and a distributed capacitance are calculated theoretically. The self-inductance is calculated from the sum of the mutual energies between small circular loops that are made by dividing the cross section of the coil. To verify its properties and calculation results, the self-resonant coils are fabricated by using a coaxial cable with characteristic impedance of $50{\Omega}$. The measured frequencies are very consistent with the calculated ones. In addition, the resonant frequency can be adjusted slightly by the tuning parameter ${\gamma}$. The resonant coils are applied to a tablet PC, the Q-factors of the Tx and Rx resonant coils are 282 and 135, respectively. As a result of measurement when height between the two resonant coils is 4.4 cm, the power transfer efficiency is more than 80 % within a radius of 5 cm.