• 제목/요약/키워드: multi-block structured grid

검색결과 16건 처리시간 0.021초

Delaunay 삼각화 기법을 활용한 다중-블록 정렬 격자의 자동 생성 기법 (Automatic Multi-Block Grid Generation Technique Based on Delaunay Triangulation)

  • 김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.108-114
    • /
    • 1999
  • In this paper. a new automatic multi=block grid generation technique for general 2D regions is introduced. According to this simple and robust method, the domain of interest is first triangulated by using Delaunay triangulation of boundary points, and then geometric information of those triangles is used to obtain block topology. Once block boundaries are obtained. structured grid for each block is generated such that grid lines have $C^0-continuity$ across inter-block boundaries. In the final step of the present method, an elliptic grid generation method is applied to smoothen grid distribution for each block and also to re-locale the inter-block boundaries, and eventually to achieve a globally smooth multi-block structured grid system with $C^1-continuity$.

  • PDF

복잡한 형상에 관한 삼차원 변형 Multi-Block 정렬격자 프로그램 개발 (DEVELOPMENT OF A THREE-DIMENSIONAL MULTI-BLOCK STRUCTURED GRID DEFORMATION CODE FOR COMPLEX CONFIGURATIONS)

  • ;이영민;정성기;;명노신
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.28-37
    • /
    • 2007
  • In this study, a multi-block structured grid deformation code based on a hybrid of a transfinite interpolation algorithm and spring analogy was developed. The configuration was modeled by a Bezier surface. A combination of the spring analogy for block vertices and the transfinite interpolation for interior grid points helps to increase the robustness and makes it suitable for distributed computing. An elliptic smoothing operator was applied to the block faces with sub-faces in order to maintain the grid smoothness and skewness. The capability of this code was demonstrated on a range of simple and complex configurations including an airfoil and a wing-body configuration.

포텐셜 해석자를 이용한 2차원 유동의 격자 생성 연구 (A STUDY ON THE GRID GENERATION FOR TWO-DIMENSIONAL FLOW USING A POTENTIAL SOLVER)

  • 이재훈;정경진
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.36-42
    • /
    • 2016
  • One of the obstacles on the grid generation for complex geometries with multi-block structured grids is the domain decomposition. In this paper, the domain decomposition for two-dimensional flow is studied using the flow characteristics. The potential flow equation with the source distribution on the panel surface is solved to extract the information of the flow. The current approach is applied to a two-dimensional cylinder and Bi-NACA0012 problems. The generated grids are applied to generic flow solvers and reasonable results are obtained. It can be concluded that the current methods is useful in the domain decomposition for the multi-block structured grid.

상호 대화형 격자생성 환경을 이용한 항공기 전기체 격자계 생성 (Grid Generation about Full Aircraft Configuration Using Interactive Grid Generator)

  • 김윤식;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.145-151
    • /
    • 1999
  • An Interactive grid generation program(KGRID) with graphical user interface(GUI) has been improved. KGRID works on the UNLX environment and GUI has been implemented with OSF/Motif and X Toolkit and the graphics language is Open GL for visualization of the 3D objects. It supports more convenient user environment to generate 2D and 3D multi-block structured grid systems. It provides various useful field grid generation methods, which are the algebraic methods, the elliptic partial differential equations method and the predictor-corrector method. It also supports 3D surface grid generation with NURBS(Non-Uniform Rational B-Spline) and various stretching functions to control grid points distribution on curves and surfaces. And some menus are added to perform flexible management, for the objects. We generated surface and field grid system about full aircraft configuration using KGRID. The performance and stability of the KGRID is verified through the generation of the grid system about a complex shape.

  • PDF

진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 1. 동적실속이 없는 경우 ) (Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 1. without Dynamic Stall ))

  • 이평국;김형태
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.8-15
    • /
    • 2007
  • In this paper, numerical calculations are performed to analyze the unsteady flow of NACA airfoil sections. In order to ease the flow computation for the fluid region changing in time, improve the quality of solution and simplify the grid generation for the oscillating foil flow, the computational method adopts a moving and deforming mesh with the multi-block grid topology. The multi-block, structured-unstructured hybrid grid is generated using the commercial meshing software Gridgen V15. The MDM (Moving & Deforming Mesh) and the UDF (User Define function) function of FLUENT 6 are adopted for computing turbulent flows of the foil in pitching motion. Computed unsteady lift and drag forces are compared with experimental data. in general, the characteristics of unsteady lift and drag of the experiments are reproduced well in the numerical analysis.

순항중인 틸트로터의 회전하는 블레이드에 대한 공력성능 수치해석 (Numerical Analysis of Aerodynamic Performance for Rotating Blades of Tilt Rotor Aircraft in Cruise Mode)

  • 안성원;고성호;김병수;최성욱
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.21-24
    • /
    • 2005
  • Numerical analysis were made for the unsteady flow fields of the rotor system of a Tilt-Rotor aircraft in cruise mode. The Reynolds-averaged thin-layer Wavier-Stokes equations were discretized by Roe's upwind differencing scheme and integrated in time by the LU-SGS algorithm. The computational domain of the rotor system was constructed by seven multi-block Chimera grids. Comparison of pressure coefficient on the surface of the main wing and blades were made for 3cases of advance ratio(0.325, 0.350, 0.375) and thrust and power coefficients for the rotor were compared with experimental data.

  • PDF

이산화된 Navier-Stokes 방정식의 영역분할법을 위한 병렬 예조건화 (Parallel Preconditioner for the Domain Decomposition Method of the Discretized Navier-Stokes Equation)

  • 최형권;유정열;강성우
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.753-765
    • /
    • 2003
  • A finite element code for the numerical solution of the Navier-Stokes equation is parallelized by vertex-oriented domain decomposition. To accelerate the convergence of iterative solvers like conjugate gradient method, parallel block ILU, iterative block ILU, and distributed ILU methods are tested as parallel preconditioners. The effectiveness of the algorithms has been investigated when P1P1 finite element discretization is used for the parallel solution of the Navier-Stokes equation. Two-dimensional and three-dimensional Laplace equations are calculated to estimate the speedup of the preconditioners. Calculation domain is partitioned by one- and multi-dimensional partitioning methods in structured grid and by METIS library in unstructured grid. For the domain-decomposed parallel computation of the Navier-Stokes equation, we have solved three-dimensional lid-driven cavity and natural convection problems in a cube as benchmark problems using a parallelized fractional 4-step finite element method. The speedup for each parallel preconditioning method is to be compared using upto 64 processors.

이동경계문제의 전산유체역학을 위한 체적격자변형코드 (A Volume Grid Deformation Code for Computational fluid Dynamics of Moving Boundary Problems)

  • 고진환;김지웅;변도영;박수형
    • 한국항공우주학회지
    • /
    • 제36권11호
    • /
    • pp.1049-1055
    • /
    • 2008
  • 최근 다분야 전산유체 역학에서는 설계 최적화, 공탄성, 강제 경계 운동 등에서 요구되어지는 이동경계문제를 다루게 된다. 이동경계의 변위가 클 경우 강건하고 효율적인 격자 변형 알고리즘의 개발이 필요하다. 본 연구에서는 유한 대형요소와 초월유한보간에 근거한 체적격자 변형 코드를 개발하였고, 정렬격자 다중 블록 Navier-Stokes 코드와 연계하였다. 개발된 코드의 검증을 위해 주기적으로 진동 운동을 하는 에어포일 문제에 대해 계산을 수행 하였고 양력, 항력, 모멘트 계수의 이력 계산 결과가 실험 결과와 잘 일치하였다.