• Title/Summary/Keyword: multi-axial testing

Search Result 26, Processing Time 0.019 seconds

Experimental research on the propagation of plastic hinge length for multi-scale reinforced concrete columns under cyclic loading

  • Tang, Zhenyun;Ma, Hua;Guo, Jun;Xie, Yongping;Li, Zhenbao
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.823-840
    • /
    • 2016
  • The plastic hinge lengths of beams and columns are a critical demand parameter in the nonlinear analysis of structures using the finite element method. The numerical model of a plastic hinge plays an important role in evaluating the response and damage of a structure to earthquakes or other loads causing the formation of plastic hinges. Previous research demonstrates that the plastic hinge length of reinforced concrete (RC) columns is closely related to section size, reinforcement ratio, reinforcement strength, concrete strength, axial compression ratio, and so on. However, because of the limitations of testing facilities, there is a lack of experimental data on columns with large section sizes and high axial compression ratios. In this work, we conducted a series of quasi-static tests for columns with large section sizes (up to 700 mm) and high axial compression ratios (up to 0.6) to explore the propagation of plastic hinge length during the whole loading process. The experimental results show that besides these parameters mentioned in previous work, the plastic hinge of RC columns is also affected by loading amplitude and size effect. Therefore, an approach toward considering the effect of these two parameters is discussed in this work.

Evaluation of Dynamic Properties through Large Triaxial Test : Development and Verification of Apparatus (대형삼축압축실험을 이용한 동적물성 산정 : 장비구축 및 검증)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Jun-S.;Hwang, Seon-Keun;Park, Jae-Jun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.640-649
    • /
    • 2010
  • Coarse granular materials such as gravel and crushed stone have been used as an important fill materials to large soil structure of railway, road, dam and so on. Although much studies for general soil materials have been carried out domestically, the studies for coarse materials were insufficient. Particularly, it is the level in which the study for dynamic properties(Elastic modulus and damping ratio) of coarse materials, applies the foreign country literature. This is due to the lack of large equipment for element test. But large soil structures made of coarse granular materials are generally important infrastructures. Therefore, the reliable design parameters for coarse materials should be obtained for safe and economic design, construction and maintenance. Triaxial test is the laboratory test method that is capable of controlling a confining pressure and boundary condition. In this project, we made a multi-purpose large triaxial testing system. This testing system is able to test coarse granular materials with maximum particle diameter of 100mm and support both the load control and displacement control. The load cell is installed inside of triaxial cell and the axial displacement is measured locally in order to control and measure more accurately in the small strain level. The verification test of this testing system was carried out with urethane verification specimens. So, from now on the useful information for coarse granular materials are expected to suggested by performing many tests with various material and condition.

  • PDF

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Model testing of leakage effect due to multi-cell inflater of rapid protection system in subsea tunnel (해저터널 급속차폐시스템의 Inflater 분할구조에 따른 터널 내 차수효율에 대한 실험적 연구)

  • Yoo, Kwang-San;Lee, Ji-Hyun;Kim, Yeon-Deok;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.295-303
    • /
    • 2015
  • This paper presents the study of leakage effect due to multi-cell inflater of rapid protection system to protect the possibilities of tunnel damages by flooding threats and unusual leakage to be occurred during and after subsea tunnel construction. Particularly, this protect system should be necessary in subsea tunnel. This research concentrates the physical model tests due to several multi-cell inflater to study protection capacity of leakage between the inflater and tunnel liner. A 27:1 small scale model are used in the model tests. The leakage rate, water pressure and axial displacement of inflater are measured during the model tests. According to the results, the minium leakage rate clearly shows in the case of two-cell inflater compared with in other cases. It is concluded that the results of this research will be very useful to understand the fundamental information of inflater structure design and development the technology of tunnel protection structures in the future.

Anisotropic Elastic Shear Moduli of Sands Measured by Multi-directional Bender Element Tests in Stress Probe Experiments (사질토의 전단 하중 재하 시 다축 벤더엘리먼트 시험으로 구한 이방적 전단탄성계수)

  • Ko, Young Joo;Jung, Young Hoon;Lee, Choong Hyun;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.159-166
    • /
    • 2008
  • The stress-strain behavior of soils can usually be regarded as non-linear, while it is also known that the soil exhibits the linear-elastic behavior at pre-failure state (very small strain range, $<10^{-3}%$). This study aims to analyze the variation of anisotropic elastic shear moduli of granular soils in various stress conditions. The stress probe experiments with the triaxial testing device equipped with local strain gages and multi-directional bender elements were conducted. When the stress ratio exceeds the range between -0.5 and 1.5, the elastic shear stiffness in the axial direction deviates from the empirical correlation with current stresses, which indicates that the yielding of soils alters the internal pathway through which the elastic shear wave propagates. The experimental results show that the variation of elastic shear moduli in the horizontal direction closely relates to the volume change of soils.

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.