• Title/Summary/Keyword: multi-axes

Search Result 104, Processing Time 0.028 seconds

High Precision Position Synchronous Control in a Multi-Axes Driving System (다축 구동 시스템의 정밀 위치동기 제어(I))

  • Byun, Jung-Hoan;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.115-121
    • /
    • 1996
  • Multi-axes driving system is more suitable for FMS(Flexible Manufacturing System) compared with a conventional single-azis driving system. It has some merits such as flexibility in operation, improvement of net working rate, maintenance free because of no gear train, etc. However, studies on position synchronous control for high precision in the multi-axes driving system are not enough. In this paper, a new method of position synchronous control is suggested in order to apply to the multi- axes driving system. The proposed method is structured very simply using speed and position controller based on PID control law. Especially, the position controller is designed to keep position error to minimize by controlling either speed of two motors. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

Interference-Free Tool Path with High Machinability for 4- and 5-Axes NC Machining of Free-Formed Surfaces (공구간섭과 절삭성을 고려한 자유 곡면의 4, 5축 NC 가공을 위한 공구 경로 산출)

  • 강재관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.146-153
    • /
    • 1998
  • NC machines with 4 or 5 axes are capable of various tool approach motions, which makes interference-free and high machinablity machining possible. This paper deals with how to integrate these two advantages (interference-free and high machinability machining) in multi-axes NC machining with a ball-end mill. Feasible tool approach region at a point on a surface is first computed, then among which an approach direction is determined so as to minimize the cutting force required. Tool and spindle volumes are considered in computing the feasible tool approach region, and the computing time is improved by trans-forming surface patches into minimal enclosing spheres. A cutting force prediction model is used for estimating the cutting force. The algorithm is developed so as to be applied to 4- or 5-axes NC machining in common.

  • PDF

Design of DSP(TMS320F240) Controller for Multi-axes Transportation System with BLDC Servo Motor (DSP(TMS320F240)를 이용한 BLDC서보 전동기 다축 이송시스템 제어기 설계)

  • 김민섭;구효원;최중경;권현아;신영호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.95-98
    • /
    • 2002
  • This paper presents a study on DSP(TMS320F240) controller design for multi-axes transportation system using BLDC servo motor. This BLDC servo motor controller was realized with DSP(Digital Signal Processor) and IPM (Intelligent Power Module). The multi-axes transportation system needs torque, speed, position control of servo motor for variable action. This paper implements those servo control with vector control and space vector modulation technique. As CPU of controller DSP(TMS320F240) is adopted because, it has PWM(Pulse Width Modulation) waveform generator, A/D(Analog to Digital) converter, SPI(Serial Peripheral Interface) port and input/output port etc. The controller of multi-axes transportation system consists of 3-level hierarchy structure that main host PC manages three sub DSP system which transfer downword command and are monitoring the states of end servo controllers. Each sub DSP system operates eight BLDC servo controllers which control BLDC servo motor using DSP and IPM Between host system and middle digital signal processor communicate with RS-422, between main processor and controller communicate with SPI port.

  • PDF

Cross-Coupled Control for Multi-axes Servo System (다축 서보시스템의 상호결합 제어)

  • Kang, Myung-Goo;Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.186-188
    • /
    • 1995
  • In this paper, Cross-Coupled Controller proposed for multi axes servo system. Tracking error and contouring error exist when a machine tool moves along the trajectory in multi exes system. The proposed scheme enhances the contouring performance by reducing contour error. Feedforward compensator reduces the effects of a nonlinear disturbance such as friction or dead zone. The proposed control scheme reduces the contour error which occured when the tool tracks the reference trajectory. Simulation results show that this scheme improves the contouring performance along the reference trajectory in XY-table.

  • PDF

High precision position synchronous control in a multi-axes driving system (II) (다축 구동 시스템의 정밀 위치동기 제어(II))

  • 양주호;변정환;김영복;정석권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.98-106
    • /
    • 1997
  • In this paper, a new method of position synchronizing control is proposed for multi-axes driving system. The proposed position synchronizing control system is constituted with speed and synchronizing controller. The speed controller is aimed at the following to speed reference. Furthermore, it is designed to guarantee low sensitivity under some disturbance as well as robustness against model uncertainties using $H_{\infty}$technique. The synchronizing controller is designed to keep minimizing the position error using PID control law which is considered to reduce the dimension of transfer function in the control system. Especially, the proposed method can be easily conducted by controlling only slave axis speed, because it, has variable structure which is decided to master and slave axis by the sign of synchronizing error. Therfore, the master axis which is smaller influenced than another axes by disturbance can be controlled without reducing or increasing its speed for precise position synchronization. The effectiveness of the proposed method is sucessfully confirmed through many experiments.s.

  • PDF

Multi-Axes Robot Controller with CAN (CAN 통신을 이용한 다축 로봇 제어기)

  • Choi, Young-Seob;Chun, Kwang-Su;Lee, Dong-Hyun;Kim, Hak-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.491-493
    • /
    • 2007
  • This paper is suggesting the method to embody Multi-Axes robot controller by using CAN which has been the most popular industrial networks. The robot controller guarantees the efficiency and reliability by using CAN as a communication tool between upper robot control parts and lower control parts.

  • PDF

A Study on Construction of Synchronous Control System for Extension and Stability (확장성과 안정성을 고려한 동기제어계의 구축에 관한 연구)

  • Byun, Jung-Hoan;Kim, Young-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1135-1142
    • /
    • 2002
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a multi-axes driving system has been developed. The synchronous error is caused by model uncertainties and disturbance at each axis. To overcome these problems, the synchronous control system of each axis has been composed of reference model, speed and synchronous controllers. The speed control system has been designed to follow speed reference. And the synchronous controller has been designed to keep minimizing the position synchronous error by reference model and H$\sub$ / approach. By the proposed method, position synchronous control system can be easily extended to two or more axes driving system. The effectiveness of the proposed method has been demonstrated by experiment.

Basidiospore Development and Fine Structure of Entoloma (외대버섯속의 담자포자의 발생과 미세구조)

  • Cho, Duck-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.6 no.2
    • /
    • pp.141-145
    • /
    • 1993
  • Apexes of basidia in Rhodophyllus(synonyum of Entoloma) muraii var. albus are divided into four sections or depressed in the center. A spore is formed by inflation of the apex of the sterigma. The apex of the sterigma is swollen and changed from a papilla through a penisform and a club into a globeform. Six spots of globose spore are regularly or irregularly depressed with hilum axes. Finally the spores are cuboid. Basidia of Entoloma squamiferrum are developed from hymenium layer of crator-shaped parabasidium. Apex of basidium is flat or depressed in the center. Although four sterigmata are developed, only two sterigmata are symmetrically swollen to two spores in certain basidia. It means that two sterigmata among four sterigmata are infertile. The apex of the sterigma is swollen into a paillaform, and then turned into a penisform. It is swollen from a clubform into a globeform. Six spots of the surfaces of globose spore are deperssed with hilum axes. Finally the spore is cuboid, and then it is released from hilum. Four sterigmata of papillaform of E. violaceobrunneum are developed from cartor-shaped basidium. The apex of sterigma is swollen to a small globeform. And then it is swollen to a clubform. The clubform is again swollen to a ellipticalform, and then more than six spots of spore surfaces are ramomly depressed with hium axes. When the depression of surface of a elliptical spore is over, it is the multi-angular spore of the heterometrical-form.

  • PDF

Real-time Measurement and Analysis for Micro Circular Path of Two-Axes Stage Using Machine Vision (머신 비젼을 이용한 2축 스테이지의 마이크로 원형 궤적 실시간 측정 및 분석)

  • Kim, Ju-Kyung;Park, Jong-Jin;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.993-998
    • /
    • 2007
  • To verify the 2D or 3D positioning accuracy of a multi-axes stage is not easy, particularly, in the case the moving path of the stage is not linear. This paper is a study on a measuring method for the curved path accurately. A machine vision technique is used to trace the moving path of two-axes stage. To improve the accuracy of machine vision, a zoom lens is used for the 2D micro moving path. The accuracy of this method depends of the CCD resolution and array align accuracy with the zoom lens system. Also, a further study for software algorithm is required to increase the tracing speed. This technique will be useful to trace a small object in the 2D micro path in real-time accurately.