• Title/Summary/Keyword: multi-agent learning

Search Result 121, Processing Time 0.045 seconds

Multi-agent Q-learning based Admission Control Mechanism in Heterogeneous Wireless Networks for Multiple Services

  • Chen, Jiamei;Xu, Yubin;Ma, Lin;Wang, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2376-2394
    • /
    • 2013
  • In order to ensure both of the whole system capacity and users QoS requirements in heterogeneous wireless networks, admission control mechanism should be well designed. In this paper, Multi-agent Q-learning based Admission Control Mechanism (MQACM) is proposed to handle new and handoff call access problems appropriately. MQACM obtains the optimal decision policy by using an improved form of single-agent Q-learning method, Multi-agent Q-learning (MQ) method. MQ method is creatively introduced to solve the admission control problem in heterogeneous wireless networks in this paper. In addition, different priorities are allocated to multiple services aiming to make MQACM perform even well in congested network scenarios. It can be observed from both analysis and simulation results that our proposed method not only outperforms existing schemes with enhanced call blocking probability and handoff dropping probability performance, but also has better network universality and stability than other schemes.

Development of Optimal Design Technique of RC Beam using Multi-Agent Reinforcement Learning (다중 에이전트 강화학습을 이용한 RC보 최적설계 기술개발)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.29-36
    • /
    • 2023
  • Reinforcement learning (RL) is widely applied to various engineering fields. Especially, RL has shown successful performance for control problems, such as vehicles, robotics, and active structural control system. However, little research on application of RL to optimal structural design has conducted to date. In this study, the possibility of application of RL to structural design of reinforced concrete (RC) beam was investigated. The example of RC beam structural design problem introduced in previous study was used for comparative study. Deep q-network (DQN) is a famous RL algorithm presenting good performance in the discrete action space and thus it was used in this study. The action of DQN agent is required to represent design variables of RC beam. However, the number of design variables of RC beam is too many to represent by the action of conventional DQN. To solve this problem, multi-agent DQN was used in this study. For more effective reinforcement learning process, DDQN (Double Q-Learning) that is an advanced version of a conventional DQN was employed. The multi-agent of DDQN was trained for optimal structural design of RC beam to satisfy American Concrete Institute (318) without any hand-labeled dataset. Five agents of DDQN provides actions for beam with, beam depth, main rebar size, number of main rebar, and shear stirrup size, respectively. Five agents of DDQN were trained for 10,000 episodes and the performance of the multi-agent of DDQN was evaluated with 100 test design cases. This study shows that the multi-agent DDQN algorithm can provide successfully structural design results of RC beam.

Multi-Agent Deep Reinforcement Learning for Fighting Game: A Comparative Study of PPO and A2C

  • Yoshua Kaleb Purwanto;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.192-198
    • /
    • 2024
  • This paper investigates the application of multi-agent deep reinforcement learning in the fighting game Samurai Shodown using Proximal Policy Optimization (PPO) and Advantage Actor-Critic (A2C) algorithms. Initially, agents are trained separately for 200,000 timesteps using Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP) with LSTM networks. PPO demonstrates superior performance early on with stable policy updates, while A2C shows better adaptation and higher rewards over extended training periods, culminating in A2C outperforming PPO after 1,000,000 timesteps. These findings highlight PPO's effectiveness for short-term training and A2C's advantages in long-term learning scenarios, emphasizing the importance of algorithm selection based on training duration and task complexity. The code can be found in this link https://github.com/Lexer04/Samurai-Shodown-with-Reinforcement-Learning-PPO.

Explicit Dynamic Coordination Reinforcement Learning Based on Utility

  • Si, Huaiwei;Tan, Guozhen;Yuan, Yifu;peng, Yanfei;Li, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.792-812
    • /
    • 2022
  • Multi-agent systems often need to achieve the goal of learning more effectively for a task through coordination. Although the introduction of deep learning has addressed the state space problems, multi-agent learning remains infeasible because of the joint action spaces. Large-scale joint action spaces can be sparse according to implicit or explicit coordination structure, which can ensure reasonable coordination action through the coordination structure. In general, the multi-agent system is dynamic, which makes the relations among agents and the coordination structure are dynamic. Therefore, the explicit coordination structure can better represent the coordinative relationship among agents and achieve better coordination between agents. Inspired by the maximization of social group utility, we dynamically construct a factor graph as an explicit coordination structure to express the coordinative relationship according to the utility among agents and estimate the joint action values based on the local utility transfer among factor graphs. We present the application of such techniques in the scenario of multiple intelligent vehicle systems, where state space and action space are a problem and have too many interactions among agents. The results on the multiple intelligent vehicle systems demonstrate the efficiency and effectiveness of our proposed methods.

Adapative Modular Q-Learning for Agents´ Dynamic Positioning in Robot Soccer Simulation

  • Kwon, Ki-Duk;Kim, In-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.149.5-149
    • /
    • 2001
  • The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent´s dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to choose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input-output pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless ...

  • PDF

Research of Foresight Knowledge by CMAC based Q-learning in Inhomogeneous Multi-Agent System

  • Hoshino, Yukinobu;Sakakura, Akira;Kamei, Katsuari
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.280-283
    • /
    • 2003
  • A purpose of our research is an acquisition of cooperative behaviors in inhomogeneous multi-agent system. In this research, we used the fire panic problem as an experiment environment. In Fire panic problem a fire exists in the environment, and follows in each steps of agent's behavior, and this fire spreads within the constant law. The purpose of the agent is to reach the goal established without touching the fire, which exists in the environment. The fire heat up by a few steps, which exists in the environment. The fire has unsureness to the agent. The agent has to avoid a fire, which is spreading in environment. The acquisition of the behavior to reach it to the goal is required. In this paper, we observe how agents escape from the fire cooperating with other agents. For this problem, we propose a unique CMAC based Q-learning system for inhomogeneous multi-agent system.

  • PDF

Multi-Agent Control Strategy using Reinforcement Leaning (강화학습을 이용한 다중 에이전트 제어 전략)

  • 이형일
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.937-944
    • /
    • 2003
  • The most important problems in the multi-agent system are to accomplish a gnat through the efficient coordination of several agents and to prevent collision with other agents. In this paper, we propose a new control strategy for succeeding the goal of a prey pursuit problem efficiently Our control method uses reinforcement learning to control the multi-agent system and consider the distance as well as the space relationship among the agents in the state space of the prey pursuit problem.

  • PDF

A Study of Communication between Multi-Agents for Web Based Collaborative Learning (웹기반 협력 학습을 위한 멀티에이전트간의 통신에 관한 연구)

  • Lee, Chul-Hwan;Han, Sun-Gwan
    • Journal of The Korean Association of Information Education
    • /
    • v.3 no.2
    • /
    • pp.41-53
    • /
    • 2000
  • The purpose of the paper is communication between multi-agents for student's learning at web based collaborative learning. First, this study investigated the whole contents and characteristics of an agent system and discussed KQML, communication language between multi-agents. Also, we suggested architecture of an agent based system for collaborative learning and interaction method between agents using KQML. We design어 and implemented collaborative learning system using Java programming language, and we also demonstrate the efficiency of collaborative learning system by communication between multi-agents through experiments.

  • PDF

Q-learning for intersection traffic flow Control based on agents

  • Zhou, Xuan;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.94-96
    • /
    • 2009
  • In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.

  • PDF

Opportunistic Spectrum Access with Discrete Feedback in Unknown and Dynamic Environment:A Multi-agent Learning Approach

  • Gao, Zhan;Chen, Junhong;Xu, Yuhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3867-3886
    • /
    • 2015
  • This article investigates the problem of opportunistic spectrum access in dynamic environment, in which the signal-to-noise ratio (SNR) is time-varying. Different from existing work on continuous feedback, we consider more practical scenarios in which the transmitter receives an Acknowledgment (ACK) if the received SNR is larger than the required threshold, and otherwise a Non-Acknowledgment (NACK). That is, the feedback is discrete. Several applications with different threshold values are also considered in this work. The channel selection problem is formulated as a non-cooperative game, and subsequently it is proved to be a potential game, which has at least one pure strategy Nash equilibrium. Following this, a multi-agent Q-learning algorithm is proposed to converge to Nash equilibria of the game. Furthermore, opportunistic spectrum access with multiple discrete feedbacks is also investigated. Finally, the simulation results verify that the proposed multi-agent Q-learning algorithm is applicable to both situations with binary feedback and multiple discrete feedbacks.