• Title/Summary/Keyword: multi-agent learning

Search Result 121, Processing Time 0.034 seconds

Deployment of Network Resources for Enhancement of Disaster Response Capabilities with Deep Learning and Augmented Reality (딥러닝 및 증강현실을 이용한 재난대응 역량 강화를 위한 네트워크 자원 확보 방안)

  • Shin, Younghwan;Yun, Jusik;Seo, Sunho;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.69-77
    • /
    • 2017
  • In this paper, a disaster response scheme based on deep learning and augmented reality technology is proposed and a network resource reservation scheme is presented accordingly. The features of deep learning, augmented reality technology and its relevance to the disaster areas are explained. Deep learning technology can be used to accurately recognize disaster situations and to implement related disaster information as augmented reality, and to enhance disaster response capabilities by providing disaster response On-site disaster response agent, ICS (Incident Command System) and MCS (Multi-agency Coordination Systems). In the case of various disasters, the fire situation is focused on and it is proposed that a plan to strengthen disaster response capability effectively by providing fire situation recognition based on deep learning and augmented reality information. Finally, a scheme to secure network resources to utilize the disaster response method of this paper is proposed.

An Immune Algorithm based Multiple Energy Carriers System (면역알고리즘 기반의 MECs (에너지 허브) 시스템)

  • Son, Byungrak;Kang, Yu-Kyung;Lee, Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.23-29
    • /
    • 2014
  • Recently, in power system studies, Multiple Energy Carriers (MECs) such as Energy Hub has been broadly utilized in power system planners and operators. Particularly, Energy Hub performs one of the most important role as the intermediate in implementing the MECs. However, it still needs to be put under examination in both modeling and operating concerns. For instance, a probabilistic optimization model is treated by a robust global optimization technique such as multi-agent genetic algorithm (MAGA) which can support the online economic dispatch of MECs. MAGA also reduces the inevitable uncertainty caused by the integration of selected input energy carriers. However, MAGA only considers current state of the integration of selected input energy carriers in conjunctive with the condition of smart grid environments for decision making in Energy Hub. Thus, in this paper, we propose an immune algorithm based Multiple Energy Carriers System which can adopt the learning process in order to make a self decision making in Energy Hub. In particular, the proposed immune algorithm considers the previous state, the current state, and the future state of the selected input energy carriers in order to predict the next decision making of Energy Hub based on the probabilistic optimization model. The below figure shows the proposed immune algorithm based Multiple Energy Carriers System. Finally, we will compare the online economic dispatch of MECs of two algorithms such as MAGA and immune algorithm based MECs by using Real Time Digital Simulator (RTDS).

Characteristics of North Dakota State University Extension Service in USA (미국 노스다코타주 농업연구와 농촌지도의 특징과 한국의 농촌지도사업에 주는 시사점)

  • Park, Duk Byeong;Goreham, Gary A.
    • Journal of Agricultural Extension & Community Development
    • /
    • v.8 no.1
    • /
    • pp.73-83
    • /
    • 2001
  • North Dakota State University (NDSU) Extension Service's purpose was to create a learning partnership that helped adults and youth enhance their lives and communities. NDSU Extension Service has maintained a strong blend of county, regional and state staff to support their program delivery. Experiment Station and Extension Service were integrated both in their job duties and at the administrative level. While researchers at the campus and center carried out both research and outreach activities with producers, Extension staff both at county and center carried out some research activities as well as outreach activities. The strong county-based Extension network was the main avenue for program delivery. Extension agents also provide programs on a multi-country basis. Program planning includes county advisory councils, multi-county advisory councils, support groups, and commodity groups, such as farmers and business people. Planning was used to shape their long-range plan of work along with adjustments to their annual activities. Funding of the NDSU Extension Service has been a blend of federal, state, and county dollars. In the past few years, grant dollars and agency partnerships have increased. Local input into extension programs, combined with support and funding from state and federal partners, enabled the extension service to truly meet the needs of people.

  • PDF

Essential technical and intellectual abilities for autonomous mobile service medical robots

  • Rogatkin, Dmitry A.;Velikanov, Evgeniy V.
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.59-68
    • /
    • 2018
  • Autonomous mobile service medical robots (AMSMRs) are one of the promising developments in contemporary medical robotics. In this study, we consider the essential technical and intellectual abilities needed by AMSMRs. Based on expert analysis of the behavior exhibited by AMSMRs in clinics under basic scenarios, these robots can be classified as intellectual dynamic systems acting according to a situation in a multi-object and multi-agent environment. An AMSMR should identify different objects that define the presented territory (rooms and paths), different objects between and inside rooms (doors, tables, and beds, among others), and other robots. They should also identify the means for interacting with these objects, people and their speech, different information for communication, and small objects for transportation. These are included in the minimum set required to form the internal world model in an AMSMR. Recognizing door handles and opening doors are some of the most difficult problems for contemporary AMSMRs. The ability to recognize the meaning of human speech and actions and to assist them effectively are other problems that need solutions. These unresolved issues indicate that AMSMRs will need to pass through some learning and training programs before starting real work in hospitals.

Cooperative Behavior Using Reinforcement Learning for the Multi-Agent system (강화학습을 이용한 다개체 시스템의 협조행동 구현)

  • Lee, Chang-Gil;Kim, Min-Soo;Lee, Seung-Whan;Oh, Hak-Joon;Jung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.428-430
    • /
    • 2001
  • 다수의 자율이동로봇으로 구성되는 다개체 시스템에서의 협조행동을 위해서 각 개체는 주변환경의 인식뿐만 아니라 환경변화에 적응할 수 있는 추론능력이 요구된다. 이에 본 논문에서는 강화학습을 이용하여 동적으로 변화하는 환경 하에서 개체들이 스스로 학습하고 대처할 수 있는 협조행동 방법을 제시한다. 제안한 방법을 먹이와 포식자 문제에 적용하여 포식자 로봇간의 협조행동을 구현하였다. 여러 대로 구성된 포식자 로봇은 회피가 목적인 먹이로봇을 추적하여 포획하는 것이 임무이며 포식자 로봇들 간의 협조행동을 위해 각 상태에 따른 최적의 행동방식을 찾는데 강화학습을 이용한다.

  • PDF

State Space Tiling and Probabilistic Action Selection for Multi-Agent Reinforcement Learning (다중 에이전트 강화 학습을 위한 상태 공간 타일링과 확률적 행동 선택)

  • Duk Kwon-Ki;Cheol Kim-In
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.106-108
    • /
    • 2006
  • 강화 학습은 누적 보상 값을 최대화할 수 있는 행동 선택 전략을 학습하는 온라인 학습의 한 형태이다. 효과적인 강화학습을 위해 학습 에이전트가 매 순간 고민해야 하는 문제가 탐험(exploitation)과 탐색(exploration)의 문제이다. 경험과 학습이 충분치 않은 상태의 에이전트는 어느 정도의 보상 값을 보장하는 과거에 경험한 행동을 선택하느냐 아니면 보상 값을 예측할 수 없는 새로운 행동을 시도해봄으로써 학습의 폭을 넓힐 것이냐를 고민하게 된다. 특히 단일 에이전트에 비해 상태공간과 행동공간이 더욱 커지는 다중 에이전트 시스템의 경우, 효과적인 강화학습을 위해서는 상태 공간 축소방법과 더불어 탐색의 기회가 많은 행동 선택 전략이 마련되어야 한다. 본 논문에서는 로봇축구 Keepaway를 위한 효율적인 다중 에이전트 강화학습 방법을 설명한다. 이 방법의 특징은 상태 공간 축소를 위해 함수근사방법의 하나인 타일 코딩을 적용하였고, 다양한 행동 선택을 위해 룰렛 휠 선택 전략을 적용한 것이다. 본 논문에서는 이 방법의 효과를 입증하기 위한 실험결과를 소개한다.

  • PDF

A Study on for Multi-Agent System Development using Learning Method (학습기법을 이용한 멀티에이전트 시스템 개발에 관한 연구)

  • Lee, Hang-Ran;Park, Seng-Su;Lee, Mal-Rey
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.597-600
    • /
    • 2001
  • 멀티에이전트 시스템은 분산적이고 개방적인 인터넷 환경에 잘 부합된다. 멀티 에이전트 시스템에서는 각 에이전트들이 자신의 목적을 위해 행동하기 때문에 에이전트간 충돌이 발생하는 경우에 조정을 통해 협력할 수 있어야 한다. 그러나 기존의 멀티 에이전트 시스템에서의 에이전트 간 협력 방법에 관한 연구 방법들은 동적 환경에서 서로 다른 목적을 갖는 에이전트간의 협동 문제를 올바로 해결할 수 없다는 문제가 있었다. 본 논문에서는 신경망과 강화학습을 이용하여 목적 패턴을 정확히 결정할 수 없는 복잡하고 동적인 환경에 멀티 에이전트의 시스템 모델을 제안한다.

  • PDF

Multi-Agent Reinforcement Learning-based Behavior Control of Parcel Sortation System (소포물 분류 시스템의 다중 에이전트 강화 학습 기반 행동 제어)

  • Choi, Ho-Bin;Kim, Ju-Bong;Hwang, Gyu-Young;Han, Youn-Hee
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.1034-1035
    • /
    • 2020
  • 인공지능은 스스로 학습하며 기존 통계 분석보다 탁월한 분석 역량을 지니고 있어 스마트팩토리 혁신에 새로운 전기를 마련할 것으로 기대된다. 이를 증명하듯 스마트팩토리의 주요 분야인 공정 간 연계 제어, 전문가 공정 제어, 로봇 자동화 등에서 활발한 연구가 이어지고 있다. 본 논문에서는 소포물 분류 시스템에 전통적인 룰 기반의 제어 방식 대신 다중 에이전트 강화 학습 제어 방식을 설계 및 적용하여 효과적인 행동 제어가 가능함을 입증한다.

Distributed Neural Network Optimization Study using Adaptive Approach for Multi-Agent Collaborative Learning Application (다중 에이전트 협력학습 응용을 위한 적응적 접근법을 이용한 분산신경망 최적화 연구)

  • Junhak Yun;Sanghun Jeon;Yong-Ju Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.442-445
    • /
    • 2023
  • 최근 딥러닝 및 로봇기술의 발전으로 인해 대량의 데이터를 빠르게 수집하고 처리하는 연구 분야들로 확대되었다. 이와 관련된 한 가지 분야로써 다중 로봇을 이용한 분산학습 연구가 있으며, 이는 단일 에이전트를 이용할 때보다 대량의 데이터를 빠르게 수집 및 처리하는데 용이하다. 본 연구에서는 기존 Distributed Neural Network Optimization (DiNNO) 알고리즘에서 제안한 정적 분산 학습방법과 달리 단계적 분산학습 방법을 새롭게 제안하였으며, 모델 성능을 향상시키기 위해 원시 변수를 근사하는 단계수를 상수로 고정하는 기존의 방식에서 통신회차가 늘어남에 따라 점진적으로 근사 횟수를 높이는 방법을 고안하여 새로운 알고리즘을 제안하였다. 기존 알고리즘과 제안된 알고리즘의 정성 및 정량적 성능 평가를 수행하기 MNIST 분류와 2 차원 평면도 지도화 실험을 수행하였으며, 그 결과 제안된 알고리즘이 기존 DiNNO 알고리즘보다 동일한 통신회차에서 높은 정확도를 보임과 함께 전역 최적점으로 빠르게 수렴하는 것을 입증하였다.

A Tool for Mapping and Measuring Sustainable Capacity Development: Concepts, Methods and Contexts (균형적 능력개발의 매핑 및 측정을 위한 도구 - 개념, 방법론 및 배경 -)

  • Liou, Jae-Ik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.165-175
    • /
    • 2006
  • The discussion about capacity development (CD) has been spotlighted as significant drivers for sustainable development in recent years. Multi-dimensional natures of capacities would lead to various definitions of CD in international institutes and organizations. CD is perceived as an endogeneous process to improve actionable learning and knowledge, but most of core capacities still remain abstract notion and might be unreliable in sustainable development (SD). The paper first explicates international perspectives of CD in association with SD. An agent-based model is especially proposed to portray more details of CD. It illuminates the role of assets (or capitals, resources) in agents to impact on ingredients of CDs that are drivers or enablers for improvement of SD. A definition of sustainable capacity development is firstly articulated in international society and its conceptual framework is also creatively designed to assist concerned international organizations. The paper concludes by proposing practical spatial asset mapping linking to agent-based organizational capacity as a tool for measuring sustainable capacity development.

  • PDF