• Title/Summary/Keyword: multi variable control

Search Result 295, Processing Time 0.032 seconds

Variable Pulse Generation Technology of Pusle ND:YAG Laser Using Real Time Multi-Discharge

  • Kim, Whi-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.102.2-102
    • /
    • 2001
  • In this study, a solid-state laser system adopting a new real time multi-discharge (RTMD) method in which three flashlamps are turned on consecutively was designed and fabricated to examine the pulse width and the pulse shape of the laser beams depending upon the changes in the lamp turn-on time. That is, this study shows a technology that makes it possible to make various pulse shapes by turning on three flashlamps consecutively on a real-time basis with the aid of a PIC one-chip microprocessor, With this technique, the lamp turn-on delay time can be varied more diversely from 0 to 10 ms and the real-time control is possible with an external keyboard, enabling various pulse shapes. In addition, longer pulses can be more widely used for industrial processing and lots of medical purposes.

  • PDF

A Learning Method of LQR Controller Using Jacobian (자코비안을 이용한 LQR 제어기 학습법)

  • Lim, Yoon-Kyu;Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.34-41
    • /
    • 2005
  • Generally, it is not easy to get a suitable controller for multi variable systems. If the modeling equation of the system can be found, it is possible to get LQR control as an optimal solution. This paper suggests an LQR learning method to design LQR controller without the modeling equation. The proposed algorithm uses the same cost function with error and input energy as LQR is used, and the LQR controller is trained to reduce the function. In this training process, the Jacobian matrix that informs the converging direction of the controller Is used. Jacobian means the relationship of output variations for input variations and can be approximately found by the simple experiments. In the simulations of a hydrofoil catamaran with multi variables, it can be confirmed that the training of LQR controller is possible by using the approximate Jacobian matrix instead of the modeling equation and this controller is not worse than the traditional LQR controller.

Algorithm or Parallel Computation for a multi-CPU controlled Robot Manipulator (복수의 CPU로 제어되는 매니퓰레이터의 병렬계산 알고리즘)

  • Woo, Kwang-Bang;Kim, Hyun-Ki;Choi, Gyoo-Suck
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.288-292
    • /
    • 1987
  • The purpose of this paper is to develope the parallel computation algorithm that enables it to minimize the completion tine of computation execution of the entire subtasks, under the constraints of the series-parallel precedence relation in each subtask. The developed algorithm was applied to the control of a robot manipulator functioned by multi-CPU's and to obtain the minimum time schedule so that real time control may be achieved. The completion time of computation execution was minimized by applying "Variable" Branch and Bound algorithm which was developed In this paper in determining the optimum ordered schedule for each CPU.

  • PDF

A Study on the Suspension System Modeling and Left Eigenstructure Assignment Control Design for Performance Improvement of an Automotive Suspension System (차량 현가시스템 성능 향상을 위한 현가장치 모델링 및 고유구조 지정 제어기 설계 연구)

  • Kim, Joo-Ho;Seo, Young-Bong;Choi, Jae-Weon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.81-88
    • /
    • 1999
  • A conventional quarter-car suspension system is a single input system with one actuator. Thus, the performance enhancement for ride quality could be limited. In this paper, we propose a novel automotive suspension system for a quarter-car with two independent actuators to improve the control performance. The left eigenstructure assignment method for multi-variable systems has been applied to the proposed novel quarter-car model.

  • PDF

Position synchronizing control of two axes system using by VSS and $H_{\infty}$ control (VSS 및 $H_{\infty}$ 제어법에 의한 2축 위치 동기 제어)

  • 변정환;김영복;양주호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.754-758
    • /
    • 1996
  • In this paper, a new method of position synchronizing control is proposed for multi-axes driving system. The proposed synchronizing control system is constituted with speed and synchronizing controller. The structure of synchronizing control system is varied by sign of synchronizing error. When a disturbance input becomes added to one axis, this axis becomes slave axis. The other axis is master axis. Therefore, master axis is not influenced by the disturbance. The speed controller of the first axis is designed by $H_{\infty}$ control theory. The speed controller of the second axis is designed by inverse dynamics of speed control system of the first axis. The speed control system designed with $H_{\infty}$ controller guarantees low sensitivity for the disturbance as well as robustness against model uncertainties. Especially, the synchronizing controller is designed to keep position error to minimize by controlling speed of slave axis. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

Analysis of Supply Airflow Control by a Stratified Thermal Model in a VAV System

  • Kim, Seo-Young;Moon, Jeong-Woo;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.46-56
    • /
    • 2001
  • The present study concerns the numerical simulation of a supply airflow control in a variable air volume (VAY) system. A stratified thermal model (multi-zone model) is suggested to predict a local thermal response of an air-conditioned space. The effects of various thermal parameters such as the cooling system capacity, the thermal mass of an air-conditioned space, the time delay of thermal effect, and the building envelope heat transmission are investigated. Further, the influence of control parameters such as the supply air temperature, the PI control factor and the thermostat location on a VAV system is quantitatively delineated. The results obtained show that the previous homogeneous lumped thermal model (single zone model) may overestimate the time taken to the set point temperature. It is also found that there exist the appropriate ranges of the control parameters for the optimal airflow control of the VAV system.

  • PDF

FUZZY CONTROL LAW OF HIGHLY MANEUVERABLE HIGH PERFORMANCE AIRCRAFT

  • Sul Cho;Park, Rai-Woong;Nam, Sae-Kyu;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.205-209
    • /
    • 1998
  • A synthesis of fuzzy variable structure control is proposed to design a high-angle-of-attack flight system for a modification version of the F-18 aircraft. The knowledge of the proportional, integral, and derivative control is combined into the fuzzy control that addresses both the highly nonlinear aerodynamic characteristics of elevators and the control limit of thrust vectoring nozzles. A simple gain scheduling method with multi-layered fuzzy rules is adopted to obtain an appropriate blend of elevator and thrust vectoring commands in the wide operating range. Improving the computational efficiency, an accelerated kernel for on-line fuzzy reasoning is also proposed. The resulting control system achieves the good flying quantities during a high-angle-of- attack excursion. Thus the fuzzy logic can afford the control engineer a flexible means of deriving effective control laws in the nonlinear flight regime.

  • PDF

Simulations of Effects of Variable Conductance Throttle Valve on the Characteristics of High Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • Thin film electronic devices which brought the current mobile environment could be fabricated only under the high quality vacuum conditions provided by high vacuum systems. Especially for the development of advanced thin film devices, constant high quality vacuum as the deposition pressure is definitely needed. For this purpose, the variable conductance throttle valves were employed to the high vacuum system. In this study, the effects of throttle valve applications on vacuum characteristics were simulated to obtain the optimum design modelling of variable conductance of high vacuum system. Commercial simulator of vacuum system, $VacSim^{(multi)}$, was used on this investigation. Reliability of employed simulator was verified by the simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure of below $10^{-3}torr$. Simulation results were plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

Simulation of the Air Conditioning System Using Fuzzy Logic Control

  • Mongkolwongrojn, M.;Sarawit, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2270-2273
    • /
    • 2003
  • Fuzzy logic control has been widely implemented in air conditioning and ventilation systems which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters , several fuzzy logic controllers had been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control room temperature and humidity in the precision air conditioning systems. The nonlinear mathematical model was formulated using energy and continuity equations. MATLAB was used to simulate the fuzzy logic control of the multi-variable air conditioning systems. The simulation results show that fuzzy logic controller can reduce the steady-state errors of the room temperature and relative humidity in multivariable air conditioning systems. The offset are less than 0.5 degree Celsius and 3 percent in relative humidity respectively under random step disturbance in heating load and moisture load respectively

  • PDF

Shape Optimization of the Lower Control Arm using the Characteristic Function and the Fatigue Analysis (특성함수와 피로해석을 이용한 로워컨트롤암의 형상최적설계)

  • Park Youngchul;Lee Donghwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.119-125
    • /
    • 2005
  • The current automotive is seeking the improvement of performance, the prevention of environmental pollution and the saving of energy resources according to miniaturization and lightweight of the components. And the variance analysis on the basis of structure analysis and DOE is applied to the lower control am. We have proposed a statistical design model to evaluate the effect of structural modification by performing the practical multi-objective optimization considering weight, stress and fatigue lift. The lower control arm is performed the fatigue analysis using the load history of real road test. The design model is determined using the optimization of acquired load history with the fatigue characteristic. The characteristic function is made use of the optimization according to fatigue characteristics to consider constrained function in the optimization of DOE. The structure optimization of a lower control arm according to fatigue characteristics is performed. And the optimized design variable is D=47 m, T=36mm, W=12 mm. In the real engineering problem of considering many objective functions, the multi-objective optimization process using the mathematical programming and the characteristic function is derived an useful design solution.