• Title/Summary/Keyword: multi user system

Search Result 1,193, Processing Time 0.026 seconds

A study on Parallel Interference Cancellation scheme based sorting method for a Multi-carrier DS/CDMA System (MC-DS/CDMA 시스템에서 정렬기법을 이용한 병렬형 간섭제거기법의 성능개선에 관한 연구)

  • Park Jae-Won;Park Yong-Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.17-27
    • /
    • 2005
  • In this paper, we introduce a Parallel Interference Canceller (PIC) based sorting method to improve performance in the MC-DS/CDMA environment. A conventional PIC estimates and subtracts out all of the MAI (Multiple Access Interference) for each user in parallel. The parallel process ensures the low delay for the detection of all users. Also this scheme requires more stages for having better performance. Since the performance of PIC is strongly related to the correct MAI estimation, we introduce the IC (Interference Cancellation) scheme to estimate the accurate weaker signal group than the desired signal using conventional PIC. The principle of the proposed receiver sorts in descending order by the strength of signal and subtracts the MAI of the strong interferers from the desired signal for the accurate estimate of the weaker signals. Following this, the proposed scheme cancels out the improved weaker interference from the desired signal, using the output of the pre-step. In this result, the proposed system obtains better BER performance than the conventional PIC because the accuracy of the strong signal is improved. However, a disadvantage exists in that the processing time has slightly longer delay than the PIC owing to the power sorting and the MAI estimation process. The system performance evaluates and compares other non-liner It according to the number of sub-carriers in the limited-bandwidth.

Exploring Optimal Threshold of RGB Pixel Values to Extract Road Features from Google Earth (Google Earth에서 도로 추출을 위한 RGB 화소값 최적구간 추적)

  • Park, Jae-Young;Um, Jung-Sup
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.66-75
    • /
    • 2010
  • The authors argues that the current road updating system based on traditional aerial photograph or multi-spectral satellite image appears to be non-user friendly due to lack of the frequent cartographic representation for the new construction sites. Google Earth are currently being emerged as one of important places to extract road features since the RGB satellite image with high multi-temporal resolution can be accessed freely over large areas. This paper is primarily intended to evaluate optimal threshold of RGB pixel values to extract road features from Google Earth. An empirical study for five experimental sites was conducted to confirm how a RGB picture provided Google Earth can be used to extact the road feature. The results indicate that optimal threshold of RGB pixel values to extract road features was identified as 126, 125, 127 for manual operation which corresponds to 25%, 30%, 19%. Also, it was found that display scale difference of Google Earth was not very influential in tracking required RGB pixel value. As a result the 61cm resolution of Quickbird RGB data has shown the potential to realistically identified the major type of road feature by large scale spatial precision while the typical algorithm revealed successfully the area-wide optimal threshold of RGB pixel for road appeared in the study area.

An Application of Fuzzy AHP and TOPSIS Methodology for Ranking the Factors Influencing FinTech Adoption Intention: A Comparative Study of China and Korea (FinTech 채택 의도에 영향을 미치는 요소의 순위 결정을 위한 Fuzzy AHP 및 TOPSIS 방법론의 적용 : 중국과 한국의 비교 연구)

  • Mu, Hong-Lei;Lee, Young-Chan
    • Journal of Service Research and Studies
    • /
    • v.7 no.4
    • /
    • pp.51-68
    • /
    • 2017
  • Financial technology (FinTech) is an emerging financial service sector include innovations in financial literacy and investment, retail banking, education, and crypto-currencies like bitcoin. One of the crucial branch of financial technology-third-party payment (TPP) is undergoing rapid growth, with online/mobile systems replacing offline financial systems. System quality and user attitudes are key perceptions driving third-party payment usage, the importance of these perceptions, however, may be different with countries as users' thinking varies from country to country. Thus, the purpose of this study is to elaborate how factors differ from China to Korea by drawing on the unified theory of acceptance and use of technology (UTAUT2). Additionally, this study also aims to propose a multi-attribute evaluation of the third-party online payment system based on analytic hierarchy process (AHP), fuzzy sets and technique for order performance by similarity to ideal solution (TOPSIS), to examine the relative importance of the perceptions influencing new technology adoption intention. The results showed that the price value has the most significant influence on Chinese perceptions, while the perceived credibility has the most significant effect on Korean perceptions. Sub-criteria also performs different results to Chinese and Korean third-party online payment system.

Technology Development for Non-Contact Interface of Multi-Region Classifier based on Context-Aware (상황 인식 기반 다중 영역 분류기 비접촉 인터페이스기술 개발)

  • Jin, Songguo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.175-182
    • /
    • 2020
  • The non-contact eye tracking is a nonintrusive human-computer interface providing hands-free communications for people with severe disabilities. Recently. it is expected to do an important role in non-contact systems due to the recent coronavirus COVID-19, etc. This paper proposes a novel approach for an eye mouse using an eye tracking method based on a context-aware based AdaBoost multi-region classifier and ASSL algorithm. The conventional AdaBoost algorithm, however, cannot provide sufficiently reliable performance in face tracking for eye cursor pointing estimation, because it cannot take advantage of the spatial context relations among facial features. Therefore, we propose the eye-region context based AdaBoost multiple classifier for the efficient non-contact gaze tracking and mouse implementation. The proposed method detects, tracks, and aggregates various eye features to evaluate the gaze and adjusts active and semi-supervised learning based on the on-screen cursor. The proposed system has been successfully employed in eye location, and it can also be used to detect and track eye features. This system controls the computer cursor along the user's gaze and it was postprocessing by applying Gaussian modeling to prevent shaking during the real-time tracking using Kalman filter. In this system, target objects were randomly generated and the eye tracking performance was analyzed according to the Fits law in real time. It is expected that the utilization of non-contact interfaces.

Multiple Layer File Format for Safe Collaborative Design (안전한 협업 디자인 작업을 위한 다중 레이어 파일 포맷)

  • Kim, Kichang;Yoo, Sang Bong
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.4
    • /
    • pp.45-65
    • /
    • 2013
  • A design file can get larger in size as the complexity of the target object increases. A large design file may reside in a large parallel computing system, such as cloud computing systems, and many designers may work concurrently on the same design file. In such a case, it is obvious that we need some kind of protection mechanism so that each user can access only the area of the file he or she is entitled to. Two approaches can be taken for this problem: one is the traditional access control mechanisms and the other encryption techniques. We take the latter approach to ensure the safety of the file even in public domain such as clouding systems, and in this paper, we suggest an encryption scheme for a file where the file is encrypted in multi-layer so that each user is allowed to access the file only at the layer for which the user has the proper access right. Each layer of the file is encrypted with different keys and these keys are exposed only to those who have the right access permit. The paper explains the necessary file format to achieve this goal and discusses the file manipulation functions to handle this new file format.

Immersive Smart Balance Board with Multiple Feedback (다중 피드백을 지원하는 몰입형 스마트 밸런스 보드)

  • Seung-Yong Lee;Seonho Lee;Junesung Park;Min-Chul Shin;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.171-178
    • /
    • 2024
  • Exercises using a Balance Board (BB) are effective in developing balance, strengthening core muscles, and improving physical fitness and concentration. In particular, the Smart Balance Board (SBB), which integrates with various digital content, provides appropriate feedback compared to traditional balance boards, maximizing the effectiveness of the exercise. However, most systems only offer visual and auditory feedback, failing to evaluate the impact on user engagement, interest, and the accuracy of exercise postures. This study proposes an Immersive Smart Balance Board (I-SBB) that utilizes multiple sensors to enable training with various feedback mechanisms and precise postures. The proposed system, based on Arduino, consists of a gyro sensor for measuring the board's posture, a communication module for wired/wireless communication, an infrared sensor to guide the user's foot placement, and a vibration motor for tactile feedback. The board's posture measurements are smoothly corrected using a Kalman Filter, and the multi-sensor data is processed in real-time using FreeRTOS. The proposed I-SBB is shown to be effective in enhancing user concentration and engagement, as well as generating interest, by integrating with diverse content.

The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms (다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구)

  • Kim, Jeonghun;Kim, Min Yong;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • Big data is creating in a wide variety of fields such as medical care, manufacturing, logistics, sales site, SNS, and the dataset characteristics are also diverse. In order to secure the competitiveness of companies, it is necessary to improve decision-making capacity using a classification algorithm. However, most of them do not have sufficient knowledge on what kind of classification algorithm is appropriate for a specific problem area. In other words, determining which classification algorithm is appropriate depending on the characteristics of the dataset was has been a task that required expertise and effort. This is because the relationship between the characteristics of datasets (called meta-features) and the performance of classification algorithms has not been fully understood. Moreover, there has been little research on meta-features reflecting the characteristics of multi-class. Therefore, the purpose of this study is to empirically analyze whether meta-features of multi-class datasets have a significant effect on the performance of classification algorithms. In this study, meta-features of multi-class datasets were identified into two factors, (the data structure and the data complexity,) and seven representative meta-features were selected. Among those, we included the Herfindahl-Hirschman Index (HHI), originally a market concentration measurement index, in the meta-features to replace IR(Imbalanced Ratio). Also, we developed a new index called Reverse ReLU Silhouette Score into the meta-feature set. Among the UCI Machine Learning Repository data, six representative datasets (Balance Scale, PageBlocks, Car Evaluation, User Knowledge-Modeling, Wine Quality(red), Contraceptive Method Choice) were selected. The class of each dataset was classified by using the classification algorithms (KNN, Logistic Regression, Nave Bayes, Random Forest, and SVM) selected in the study. For each dataset, we applied 10-fold cross validation method. 10% to 100% oversampling method is applied for each fold and meta-features of the dataset is measured. The meta-features selected are HHI, Number of Classes, Number of Features, Entropy, Reverse ReLU Silhouette Score, Nonlinearity of Linear Classifier, Hub Score. F1-score was selected as the dependent variable. As a result, the results of this study showed that the six meta-features including Reverse ReLU Silhouette Score and HHI proposed in this study have a significant effect on the classification performance. (1) The meta-features HHI proposed in this study was significant in the classification performance. (2) The number of variables has a significant effect on the classification performance, unlike the number of classes, but it has a positive effect. (3) The number of classes has a negative effect on the performance of classification. (4) Entropy has a significant effect on the performance of classification. (5) The Reverse ReLU Silhouette Score also significantly affects the classification performance at a significant level of 0.01. (6) The nonlinearity of linear classifiers has a significant negative effect on classification performance. In addition, the results of the analysis by the classification algorithms were also consistent. In the regression analysis by classification algorithm, Naïve Bayes algorithm does not have a significant effect on the number of variables unlike other classification algorithms. This study has two theoretical contributions: (1) two new meta-features (HHI, Reverse ReLU Silhouette score) was proved to be significant. (2) The effects of data characteristics on the performance of classification were investigated using meta-features. The practical contribution points (1) can be utilized in the development of classification algorithm recommendation system according to the characteristics of datasets. (2) Many data scientists are often testing by adjusting the parameters of the algorithm to find the optimal algorithm for the situation because the characteristics of the data are different. In this process, excessive waste of resources occurs due to hardware, cost, time, and manpower. This study is expected to be useful for machine learning, data mining researchers, practitioners, and machine learning-based system developers. The composition of this study consists of introduction, related research, research model, experiment, conclusion and discussion.

A Novel Query-by-Singing/Humming Method by Estimating Matching Positions Based on Multi-layered Perceptron

  • Pham, Tuyen Danh;Nam, Gi Pyo;Shin, Kwang Yong;Park, Kang Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1657-1670
    • /
    • 2013
  • The increase in the number of music files in smart phone and MP3 player makes it difficult to find the music files which people want. So, Query-by-Singing/Humming (QbSH) systems have been developed to retrieve music from a user's humming or singing without having to know detailed information about the title or singer of song. Most previous researches on QbSH have been conducted using musical instrument digital interface (MIDI) files as reference songs. However, the production of MIDI files is a time-consuming process. In addition, more and more music files are newly published with the development of music market. Consequently, the method of using the more common MPEG-1 audio layer 3 (MP3) files for reference songs is considered as an alternative. However, there is little previous research on QbSH with MP3 files because an MP3 file has a different waveform due to background music and multiple (polyphonic) melodies compared to the humming/singing query. To overcome these problems, we propose a new QbSH method using MP3 files on mobile device. This research is novel in four ways. First, this is the first research on QbSH using MP3 files as reference songs. Second, the start and end positions on the MP3 file to be matched are estimated by using multi-layered perceptron (MLP) prior to performing the matching with humming/singing query file. Third, for more accurate results, four MLPs are used, which produce the start and end positions for dynamic time warping (DTW) matching algorithm, and those for chroma-based DTW algorithm, respectively. Fourth, two matching scores by the DTW and chroma-based DTW algorithms are combined by using PRODUCT rule, through which a higher matching accuracy is obtained. Experimental results with AFA MP3 database show that the accuracy (Top 1 accuracy of 98%, with an MRR of 0.989) of the proposed method is much higher than that of other methods. We also showed the effectiveness of the proposed system on consumer mobile device.

A Policy-Based Meta-Planning for General Task Management for Multi-Domain Services (다중 도메인 서비스를 위한 정책 모델 주도 메타-플래닝 기반 범용적 작업관리)

  • Choi, Byunggi;Yu, Insik;Lee, Jaeho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.499-506
    • /
    • 2019
  • An intelligent robot should decide its behavior accordingly to the dynamic changes in the environment and user's requirements by evaluating options to choose the best one for the current situation. Many intelligent robot systems that use the Procedural Reasoning System (PRS) accomplishes such task management functions by defining the priority functions in the task model and evaluating the priority functions of the applicable tasks in the current situation. The priority functions, however, are defined locally inside of the plan, which exhibits limitation for the tasks for multi-domain services because global contexts for overall prioritization are hard to be expressed in the local priority functions. Furthermore, since the prioritization functions are not defined as an explicit module, reuse or extension of the them for general context is limited. In order to remove such limitations, we propose a policy-based meta-planning for general task management for multi-domain services, which provides the ability to explicitly define the utility of a task in the meta-planning process and thus the ability to evaluate task priorities for general context combining the modular priority functions. The ontological specification of the model also enhances the scalability of the policy model. In the experiments, adaptive behavior of a robot according to the policy model are confirmed by observing the appropriate tasks are selected in dynamic service environments.

An Effective Mitigation Method on the Signal-Integrity Effects by Splitting of a Return Current Plane (귀환 전류 평면의 분할에 기인하는 신호 무결성의 효과적인 대책 방법)

  • Jung, Ki-Bum;Jun, Chang-Han;Chung, Yeon-Choon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.366-375
    • /
    • 2008
  • Generally a return current plane(RCP) of high speed digital and analog part is partitioned. This is achieved in order to decrease the noise interference between subsystem in PCBs(Printed Circuit Boards). However, when the connected signal line exists between each sub system, this partition will cause unwanted effects. In a circuital point of view, RCP partition has a bad influence upon signal integrity. In a EMI(Electromagnetic Interference) point of view, the partition of the return current plane becomes a primary factor to increase the radiated emission. Component bridge(CB) is usecl for the way of maintaining signal integrity, still specific user's guide doesn't give sufficient principle. In a view point of signal integrity, design principle of multi-CB using method will be analyzed by measurement and simulation. And design principle of noise mitigation will be provided. Generally interval of CB is ${\lambda}/20$ ferrite bead. In this study. When multi-CB connection is applied, design principle of ferrite bead and chip resistor is proved by measurement and simulation. Multi-connected chip resistance$(0{\Omega})$ is proved to be more effective design method in the point of signal integrity.