• Title/Summary/Keyword: multi resources

Search Result 1,861, Processing Time 0.031 seconds

A Study on the History Matching and Assessment of Production Performance in a Shale Gas Reservoir Considering Influenced Parameter for Productivity (생산 영향인자를 고려한 셰일가스 저류층의 이력검증 및 생산성 평가 연구)

  • Park, Kyung-Sick;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.62-72
    • /
    • 2020
  • This study presents a methodology of history matching to evaluate the productivity of shale gas reservoir with high reliability and predict future production rate in the Horn-River basin, Canada. Sensitivity analysis was performed to analyze the effect of physical properties of shale gas reservoir on productivity. Based on the results, reservoir properties were classified into 4 cases and history matching were performed considering the classified 4 cases as objective function. The blind test was conducted using additional field production data for 3 years after the history matching period. The error of gas production rate in Case 1(all reservoir parameters), Case 2(influenced parameters for productivity), Case 3(controllable parameters), and Case 4(uncontrollable parameters) were 7.67%, 7.13%, 17.54%, and 10.04%, respectively. This means that it seems to be effective to consider all reservoir parameters in early period for 4 years but Case 2 which considered influenced parameters for productivity shows the highest reliability in predicting future production. The estimated ultimate recovery (EUR) of production well predicted using the Case 2 model was estimated to be 17.24 Bcf by December 2030 and the recovery factor compared to original gas in place (OGIP) was 32.2%.

A Fundamental Comparison and Enhancement of Simulation and Optimization Modeling Approach for Multiple Reservoir Operation (댐군 연계운영에서 시뮬레이션 기법과 최적화 모형 활용기법의 원론적 비교 및 개선방법에 대한 연구)

  • Kong, Jeong-Taek;Kim, Jae-Hee;Kim, Sheung-Kown
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.118-118
    • /
    • 2012
  • 수자원의 효율적 이용 및 관리는 심화되고 있는 기후변화에 선제적으로 대응하고 발생가능한 물위기에 대비하기 위한 필수조건이다. 그 중 가장 핵심이 되는 요소는 댐에 저수된 물을 효과적으로 이용하는 것, 즉 댐 건설목적에 따라 시간 및 공간별로 적절하게 할당시키는 것이라고 할 수 있다(Kim, 1998). 그러나 단일 댐의 운영과는 달리 수계내 댐군의 연계 운영은 매우 복잡하고 어려운 문제이다. 연계된 댐들간 저수 상황을 고려하여 유역내 시 공간적인 용수 수요의 지속적인 충족을 위하여 유입량 예측의 정확성을 높이도록 하고, 상류 댐에 최대한 저류하도록 하며, 여수로 방류 같은 불필요한 방류를 최소화 하고, 서로 상충되는 목표를 갖고 있지만, 홍수용량 및 발전수위를 최대로 확보하도록 하여야 한다. 이처럼 댐 운영을 위한 실제 상황은 단일 목적에 의한 최적화와는 달리 여러 상충되는 목적 및 구성 요소들간의 타협, 조정을 필요로 한다. 댐군의 연계운영 문제는 1960년대 초부터 현재까지 활발히 연구가 진행되어 온 분야 중 하나이나 문제의 복잡성과 어려움으로 인해 아직까지도 최선의 방안을 제시하기 어려운 문제이다(ReVelle, 2000). 이를 위한 방법은 시뮬레이션 모형 활용기법과 최적화 모형 활용기법으로 대별할 수 있으며 각 방법의 서로 다른 구조적 특성과 장단점으로 인하여 이원화된 체계로 사용되는 것이 현재의 국내 실정이다. 대부분의 실무에서는 이해도도 쉽고, 비교적 결과를 빨리 도출할 수 있는 시뮬레이션 기반의 모형을 활용하며 대표적으로 HEC-5, K-ModSim, HEC-ResSim 등이 활용되어왔다. 반면, 학계에서는 DP, MIP, SLP, SDP 등 최적화기법을 댐운영에 활용 할 것을 제안하고 있지만, 활용에 대한 거부감이 남아있는 것이 현실이다. 본 연구에서는 시뮬레이션과 최적화기법의 원론적 비교를 통해 각 방법의 장단점과 한계점을 분석하고, 왜 이원화된 사용체계로 되었는지에 대한 고찰과 이에 대한 해결책으로 시뮬레이션모형의 장점과 최적화기법의 장점을 결합한 모형을 제안한다. 국내에는 Kim and Park(1998)이 시뮬레이션 기반의 최적화 모형 CoMOM(Coordinated Multi-Reservoir Operating Model)을 개발하였으며, 이후 21C프론티어 연구사업(2001-2011)에서 모형의 보완수정 검증을 통해 실무 활용도를 높여 왔다. 본 연구를 통하여 거부감의 원천을 추적해 보고, 타당한 이유가 있는지 대한 것을 심층 분석해보고, CoMOM모형과 시뮬레이션 모형, 다른 최적화 기법들과의 원론적 비교를 통해 각 방법들의 효율적인 활용방안과 최적화모형의 구체적인 활용방안을 제시하고자 한다.

  • PDF

Effects of the water level reduction and the flow distribution according to change of the side weir location in detention reservoir (홍수조절지 횡월류위어의 위치 변화에 따른 수위 저감 및 유량 분담 효과)

  • Seong, Hoje;Park, Inhwan;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.555-564
    • /
    • 2018
  • The detention reservoir is a hydraulic structure that constructs a levee on the inland of river and sets up side weir in a section of the levee, and this facility stores a part of the flood volume in case of a flood event over a certain scale. In order to optimize the operation of detention reservoir, it is necessary to review the linkage with existing facilities in the river. In this study, the effect of water level reduction and the flow distribution was analyzed according to the location of the side weir in the detention reservoir considering the run-of-the-river gate. Two radial gates were installed in the experimental channel, and the water level in channel and the overflow of weir were measured by moving the location of the side weir upstream from the gate. As a results of experiment, it was confirmed that the water level reduction is more remarkable as the location of the side weir was closer to the gate, and the effect of flow distribution is not greatly changed. When two or more side weirs were operated, it is confirmed that the sufficient storage space was secured and the water level reduction effect with the location of the side weir is not large. In addition, the water level reduction rate according to the location of the side weir was estimated by empirical formula and it is provided as basic data that can be used in the planning of the detention reservoir.

A Java-based Dynamic Management Systemfor Heterogeneous Agents (이질적 에이전트를 위한 자바 기반의 동적 관리 시스템)

  • Jang, Ji-Hun;Choe, Jung-Min
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.7
    • /
    • pp.778-787
    • /
    • 1999
  • 이제까지 대부분의 다중 에이전트 시스템에서는 에이전트 사회에 속한 모든 응용 에이전트를 작업 요청에 관계없이 처음부터 구동시킨다고 가정하였다. 이러한 에이전트 정적 구동 방법은 에이전트 관리를 단순하게 해주는 이점을 제공하지만 워크플로우 관리나 전자상거래와 같이 매우 많은 수의 에이전트로 구성되는 응용 분야에서는 시스템 과부하와 자원의 낭비 등 많은 문제점을 초래한다. 동적 에이전트 관리는 이에 대한 해결책으로 아주 많은 수의 에이전트를 포함하는 다중 에이전트 시스템에서 현재 수행중인 작업에 관련된 에이전트만을 선별하여 구동시키고, 작업이 끝난 에이전트는 종료시킴으로써 자원의 낭비를 막고 에이전트간의 상호작용 시에 요구되는 에이전트 통신의 복잡도 부담을 감소시키는 효과를 낸다. 본 논문에서는 자바로 에이전트 관리 시스템을 구현하고, 이 관리 시스템을 통해 각기 다른 언어로 개발된 응용 에이전트가 분산된 환경에서 상호 협력을 통해 작업을 수행할 수 있는 기법을 제안한다. 사용자나 다른 에이전트의 요청으로 에이전트를 동적으로 수행시키기 위해 다른 언어로의 확장을 가능하게 하는 Java Native Interface(JNI)를 사용한 기술 및 이러한 이질적인 에이전트간의 원활한 통신을 위해서 KQML 언어 인터페이스를 통한 통신 기능을 제안한다. 이질적 에이전트의 동적 관리를 가능하게 함으로써 다중 에이전트 시스템의 자원 이용 효율성과 확장성을 높이고 다양한 환경 변화에 대한 적응성과 개선된 협동능력을 제공한다.Abstract It has been assumed that all application agents in a multi-agent system are pre-invoked and remain active regardless of whether they are actually used. Although this kind of static agent invocation simplifies the management of agents, it causes several problems such as the system overload and a waste of resources, especially in the areas of the workflow management and the electronic commerce that consist of tens and even hundreds of application agents. A solution for these problems is the scheme of dynamic agent management that selectively invokes only agents that are actually requested and terminates them when they are no longer needed. This method prevents a waste of system resources and alleviates the complexity of agent communications.This paper proposes an agent management system implemented in Java that supports interactions between application agents that are developed using different languages. Dynamic agent invocation is accomplished by Java Native Interface(JNI) that links two heterogeneous methods, and by KQML language interface that facilitates the communications between heterogeneous agents. This scheme of dynamic agent management provides efficient resource usage, easy extensibility, dynamic adaptibility to changes in the environment, and improved cooperation.

Analysis of the applicability of parameter estimation methods for a transient storage model (저장대모형의 매개변수 산정을 위한 최적화 기법의 적합성 분석)

  • Noh, Hyoseob;Baek, Donghae;Seo, Il Won
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.681-695
    • /
    • 2019
  • A Transient Storage Model (TSM) is one of the most widely used model accounting for complex solute transport in natural river to understanding natural river properties with four TSM key parameters. The TSM parameters are estimated via inverse modeling. Parameter estimation of the TSM is carried out by solving optimization problem about finding best fitted simulation curve with measured curve obtained from tracer test. Several studies have reported uncertainty in parameter estimation from non-convexity of the problem. In this study, we assessed best combination of optimization method and objective function for TSM parameter estimation using Cheong-mi Creek tracer test data. In order to find best optimization setting guaranteeing convergence and speed, Evolutionary Algorithm (EA) based global optimization methods, such as CCE of SCE-UA and MCCE of SP-UCI, and error based objective functions were compared, using Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL). Overall results showed that multi-EA SC-SAHEL with Percent Mean Squared Error (PMSE) objective function is the best optimization setting which is fastest and stable method in convergence.

Applicability of Composite Polyurea Method Considering the Required Performance in Underground Parking Lot Upper Slab (공동주택 지하주차장 상부슬래브의 요구성능을 고려한 복합형 폴리우레아 공법의 적용성 검토)

  • Lee, Jung-Hun;Choi, Eun-Kyu;Song, Je-Young;Kim, Soo-Yeon;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.243-254
    • /
    • 2019
  • In this study, problems of the waterproofing methods in which water leakage occurs in the upper slab of the underground parking lot of apartment houses and the requirements considering the characteristics of the upper slab, and selected the appropriate performance(proposal) for the composite polyurea process are reviewed. As a result of the study, it is necessary to review performance such as responsiveness to upper slab of the multi-unit underground parking lot that is comprised of (1) crack and behavior responsiveness, (2) surface integrity, (3) vertical watertight stability, (4) pressure layer construction, (5) impact and pressure response and (6) vehicle moving load. As a result of evaluating 5 items corresponding to the requirements for the soft and hard complex polyurea, all of them were found to meet the conditions, and each materials were improved by compounding the materials that had problems when applying a single-ply method, thereby clarifying the advantages and disadvantages of the material property. However, in order to apply to the actual site, additional evaluation on site applicability such as mock-up evaluation should be conducted, and subsequent studies on the applicability of the market through review of economic feasibility and maintenance is required.

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.

Application of recurrent neural network for inflow prediction into multi-purpose dam basin (다목적댐 유입량 예측을 위한 Recurrent Neural Network 모형의 적용 및 평가)

  • Park, Myung Ky;Yoon, Yung Suk;Lee, Hyun Ho;Kim, Ju Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1217-1227
    • /
    • 2018
  • This paper aims to evaluate the applicability of dam inflow prediction model using recurrent neural network theory. To achieve this goal, the Artificial Neural Network (ANN) model and the Elman Recurrent Neural Network(RNN) model were applied to hydro-meteorological data sets for the Soyanggang dam and the Chungju dam basin during dam operation period. For the model training, inflow, rainfall, temperature, sunshine duration, wind speed were used as input data and daily inflow of dam for 10 days were used for output data. The verification was carried out through dam inflow prediction between July, 2016 and June, 2018. The results showed that there was no significant difference in prediction performance between ANN model and the Elman RNN model in the Soyanggang dam basin but the prediction results of the Elman RNN model are comparatively superior to those of the ANN model in the Chungju dam basin. Consequently, the Elman RNN prediction performance is expected to be similar to or better than the ANN model. The prediction performance of Elman RNN was notable during the low dam inflow period. The performance of the multiple hidden layer structure of Elman RNN looks more effective in prediction than that of a single hidden layer structure.

An analysis of effects of seasonal weather forecasting on dam reservoir inflow prediction (장기 기상전망이 댐 저수지 유입량 전망에 미치는 영향 분석)

  • Kim, Seon-Ho;Nam, Woo-Sung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.451-461
    • /
    • 2019
  • The dam reservoir inflow prediction is utilized to ensure for water supply and prevent future droughts. In this study, we predicted the dam reservoir inflow and analyzed how seasonal weather forecasting affected the accuracy of the inflow for even multi-purpose dams. The hindcast and forecast of GloSea5 from KMA were used as input for rainfall-runoff models. TANK, ABCD, K-DRUM and PRMS models which have individual characteristics were applied to simulate inflow prediction. The dam reservoir inflow prediction was assessed for the periods of 1996~2009 and 2015~2016 for the hindcast and forecast respectively. The results of assessment showed that the inflow prediction was underestimated by comparing with the observed inflow. If rainfall-runoff models were calibrated appropriately, the characteristics of the models were not vital for accuracy of the inflow prediction. However the accuracy of seasonal weather forecasting, especially precipitation data is highly connected to the accuracy of the dam inflow prediction. It is recommended to consider underestimation of the inflow prediction when it is used for operations. Futhermore, for accuracy enhancement of the predicted dam inflow, it is more effective to focus on improving a seasonal weather forecasting rather than a rainfall-runoff model.

Elicitation of drought alternatives based on Water Policy Council and the role of Shared Vision Model (협의체 기반 가뭄 대응 대안 도출과 비전공유모형의 역할)

  • Kim, Gi Joo;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.6
    • /
    • pp.429-440
    • /
    • 2019
  • The numbers of multi-year droughts due to climate change are increasing worldwide. Boryeong Dam, located in Chungcheongnam-do, South Korea, was also affected by a 4-year drought from 2014 to 2017. Since traditional unilateral decision making processes to alleviate drought damage have, until now, resulted in conflicts between many of the involved groups, the need for active participation from both stakeholders and policymakers is greater than before. This study introduced Shared Vision Planning, a collaborative decision making process that involves participation from various groups of stakeholders, by organizing Water Policy Council for Climate Change Adaptation in Chungcheongnam-do. A Shared Vision Planning Model was then developed with a system dynamics software by working together with relevant stakeholders to actively reflect their requests through three council meetings. Multiple simulations that included various future climate change scenarios were conducted, and future drought vulnerability analysis results of Boryeong Dam and districts, in terms of frequency, length, and magnitude, were arrived at. It was concluded that Boryeong Dam was more vulnerable to future droughts than the eight districts. While the total water deficit in the eight districts was not so significant, their water deficit in terms of spatial discordance was proved to be more problematic. In the future, possible alternatives to the model will be implemented so that stakeholders can use it to agree on a policy for possible conflict resolutions.