• Title/Summary/Keyword: multi point constraint

Search Result 31, Processing Time 0.019 seconds

Face Detection Using A Selectively Attentional Hough Transform and Neural Network (선택적 주의집중 Hough 변환과 신경망을 이용한 얼굴 검출)

  • Choi, Il;Seo, Jung-Ik;Chien, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.93-101
    • /
    • 2004
  • A face boundary can be approximated by an ellipse with five-dimensional parameters. This property allows an ellipse detection algorithm to be adapted to detecting faces. However, the construction of a huge five-dimensional parameter space for a Hough transform is quite unpractical. Accordingly, we Propose a selectively attentional Hough transform method for detecting faces from a symmetric contour in an image. The idea is based on the use of a constant aspect ratio for a face, gradient information, and scan-line-based orientation decomposition, thereby allowing a 5-dimensional problem to be decomposed into a two-dimensional one to compute a center with a specific orientation and an one-dimensional one to estimate a short axis. In addition, a two-point selection constraint using geometric and gradient information is also employed to increase the speed and cope with a cluttered background. After detecting candidate face regions using the proposed Hough transform, a multi-layer perceptron verifier is adopted to reject false positives. The proposed method was found to be relatively fast and promising.