• Title/Summary/Keyword: multi objective genetic algorithm

Search Result 315, Processing Time 0.027 seconds

Integrated Optimal Design of Hybrid Structural Control System using Multi-Stage Goal Programming Technique (다단계 목표계획법을 이용한 복합구조제어시스템의 통합최적설계)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.93-102
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system may be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. In the multi-stage goal programming, design targets(or goals) are at first selected too correspond too several stages and the objective function is th n defined as the sum of the normalized distances between these design goals and each of the physical values, that is, the inter-story drifts and the capacities of the control system. Finally, the goal-updating genetic algorithm searches for optimal solutions satisfying each stage of design goals and, if a solution exists, the levels of design goals are consecutively updated to approach the global optimal solution closest too the higher level of desired goals. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.

Shape Scheme and Size Discrete Optimum Design of Plane Steel Trusses Using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 평면 철골트러스의 형상계획 및 단면 이산화 최적설계)

  • Kim, Soo-Won;Yuh, Baeg-Youh;Park, Choon-Wok;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.89-97
    • /
    • 2004
  • The objective of this study is the development of a scheme and discrete optimum design algorithm, which is based on the genetic algorithm. The algorithm can perform both scheme and size optimum designs of plane trusses. The developed Scheme genetic algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. However, its application to the complicated structures has been limited because of the extreme time need for a number of structural analyses. This study solves the problem by introducing the size & scheme genetic algorithm operators into the genetic algorithm. The genetic process virtually takes no time. However, the evolutionary process requires a tremendous amount of time for a number of structural analyses. Therefore, the application of the genetic algorithm to the complicated structures is extremely difficult, if not impossible. The scheme genetic algorithm operators was introduced to overcome the problem and to complement the evolutionary process. It is very efficient in the approximate analyses and scheme and size optimization of plane trusses structures and considerably reduces structural analysis time. Scheme and size discrete optimum combined into the genetic algorithm is what makes the practical discrete optimum design of plane fusses structures possible. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to various optimum design examples: plane pratt, howe and warren truss.

  • PDF

PS-NC Genetic Algorithm Based Multi Objective Process Routing

  • Lee, Sung-Youl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • This paper presents a process routing (PR) algorithm with multiple objectives. PR determines the optimum sequence of operations for transforming a raw material into a completed part within the available machining resources. In any computer aided process planning (CAPP) system, selection of the machining operation sequence is one of the most critical activities for manufacturing a part and for the technical specification in the part drawing. Here, the goal could be to generate the sequence that optimizes production time, production cost, machine utilization or with multiple these criteria. The Pareto Stratum Niche Cubicle (PS NC) GA has been adopted to find the optimum sequence of operations that optimize two conflicting criteria; production cost and production quality. The numerical analysis shows that the proposed PS NC GA is both effective and efficient to the PR problem.

Fuzzy-GA Application for Allocation and Operation of Dispersed Generation Systems in Composite Distribution Systems (복합배전계통에서 분산형전원의 설치 및 운영을 위한 Fuzzy-GA 응용)

  • 김규호;이유정;이상봉;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.584-592
    • /
    • 2003
  • This paper presents a fuzzy-GA method for the allocation and operation of dispersed generator systems(DGs) based on load model in composite distribution systems. Groups of each individual load model consist of residential, industrial, commercial, official and agricultural load. The problem formulation considers an objective to reduce power loss of distribution systems and the constraints such as the number or total capacity of DGs and the deviation of the bus voltage. The main idea of solving fuzzy goal programming is to transform the original objective function and constraints into the equivalent multi-objectives functions with fuzzy sets to evaluate their imprecise nature for the criterion of power loss minimization, the number or total capacity of DGs and the bus voltage deviation, and then solve the problem using genetic algorithm. The method proposed is applied to IEEE 12 bus and 33 bus test systems to demonstrate its effectiveness. .

Global Optimization Using Kriging Metamodel and DE algorithm (크리깅 메타모델과 미분진화 알고리듬을 이용한 전역최적설계)

  • Lee, Chang-Jin;Jung, Jae-Jun;Lee, Kwang-Ki;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.537-542
    • /
    • 2001
  • In recent engineering, the designer has become more and more dependent on computer simulation. But defining exact model using computer simulation is too expensive and time consuming in the complicate systems. Thus, designers often use approximation models, which express the relation between design variables and response variables. These models are called metamodel. In this paper, we introduce one of the metamodel, named Kriging. This model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. This class of interpolating model has flexibility to model response data with multiple local extreme. By reason of this multi modality, we can't use any gradient-based optimization algorithm to find global extreme value of this model. Thus we have to introduce global optimization algorithm. To do this, we introduce DE(Differential Evolution). DE algorithm is developed by Ken Price and Rainer Storn, and it has recently proven to be an efficient method for optimizing real-valued multi-modal objective functions. This algorithm is similar to GA(Genetic Algorithm) in populating points, crossing over, and mutating. But it introduces vector concept in populating process. So it is very simple and easy to use. Finally, we show how we determine Kriging metamodel and find global extreme value through two mathematical examples.

  • PDF

Design Parameter Optimization of Liquid Rocket Engine Using Generic Algorithms (유전알고리즘을 이용한 액체로켓엔진 설계변수 최적화)

  • Lee, Sang-Bok;Kim, Young-Ho;Roh, Tae-Seoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.127-134
    • /
    • 2011
  • A genetic algorithm (GA) has been employed to optimize the major design variables of the liquid rocket engine. Pressure of the main combustion chamber, nozzle expansion ratio and O/F ratio have been selected as design variables. The target engine has the open gas generator cycle using the LO2/RP-1 propellant. The gas properties of the combustion chamber have been obtained from CEA2 and the mass has been estimated using reference data. The objective function has been set as multi-objective function with the specific impulse and thrust to weight ratio using the weight method. The result shows about 4% improvement of the specific impulse and 23% increase of the thrust to weight ratio. The Pareto frontier line has been also obtained for various thrust requirements.

  • PDF

Optimal design of floating substructures for spar-type wind turbine systems

  • Choi, Ejae;Han, Changwan;Kim, Hanjong;Park, Seonghun
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.253-265
    • /
    • 2014
  • The platform and floating structure of spar type offshore wind turbine systems should be designed in order for the 6-DOF motions to be minimized, considering diverse loading environments such as the ocean wave, wind, and current conditions. The objective of this study is to optimally design the platform and substructure of a 3MW spar type wind turbine system with the maximum postural stability in 6-DOF motions as well as the minimum material cost. Therefore, design variables of the platform and substructure were first determined and then optimized by a hydrodynamic analysis. For the hydrodynamic analysis, the body weight of the system was considered, and the ocean wave conditions were quantified to the wave forces using the Morison's equation. Moreover, the minimal number of computation analysis models was generated by the Design of Experiments (DOE), and the design variables of the platform and substructure were finally optimized by using a genetic algorithm with a neural network approximation.

Multi-Objective Optimization Technique Using Genetic Algorithm and Its Application to Design of Linear Induction Motor (유전알고리즘을 이용한 선형유도전동기의 다중목적 최적설계)

  • Ryu, K.B.;Choi, Y.J.;Kim, C.E.;Kim, S.W.;Park, Y.C.;Kim, J.H.;Im, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.165-167
    • /
    • 1994
  • This paper presents a new method for multiobjective optimization using Genetic Algorithm-Sexual Reproduction Model(SR model). In SR model, each individual consists of chromosome pairs. Sex cells(gametes) are produced through artificial meiosis in which crossover and mutation occur, The proposed method has two selection operators, one, individual selection which selects the individual to fertilize, and the other, gamete selection which makes zygote for offspring production, The two selection schemes are repectively conducted according to different fitness(or objective) function and consequently give a solution which is unbiased to any objectives. We apply the proposed method to optimization of the design parameters of Linear Induction Motor(LIM) and show its effectiveness.

  • PDF

An Optimal Parameter Selection of Power System Stabilizer using Immune Algorithm (면역 알고리즘을 이용한 전력 계통 안정화 장치의 최적 파라미터 선정)

  • Jeong, Hyeong-Hwan;Lee, Jeong-Pil;Jeong, Mun-Gyu;Lee, Gwang-U
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.9
    • /
    • pp.433-445
    • /
    • 2000
  • In this paper, optimal tuning problem of power system stabilizer(PSS) using Immune Algorithm(IA) is investigated to improve power system dynamic stability. In proposed method, objective function is represented as antigens. An affinity calculation is embedded within the algorithm for determining the promotion or suppression of antibody. An antibody that most fits the antigen is considered as the solution to PSS tuning problem. The computaton performance by the proposed method is compared with Genetic Algorithm(GA). The porposed PSS using IA has been applied for two sample system, single-machine infinite bus system and multi-machine power system. The performance of the proposed PSS is compared with that of conventional PSS. It is shown that the proposed PSS tuned using immune algorithm is more robust than conventional PSS.

  • PDF