• Title/Summary/Keyword: multi modes

Search Result 543, Processing Time 0.026 seconds

Optimality criteria based seismic design of multiple tuned-mass-dampers for the control of 3D irregular buildings

  • Daniel, Yael;Lavan, Oren
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.77-100
    • /
    • 2015
  • Multiple tuned mass dampers (MTMDs) tuned to various frequencies have been shown to efficiently control the seismic response of structures where multiple modes are dominant. One example is irregular structures that are found more vulnerable than their symmetric counterparts. With the technology of MTMDs available, design and optimal design methodologies are required for application. Such a methodology, in the form of an analysis/redesign (A/R) scheme, has been previously presented by the authors while limiting responses of interest to allowable values, i.e., performance-based design (PBD). In this paper, the A/R procedure is modified based on formal optimality criteria, making it more cost efficient, as well as more computationally efficient. It is shown that by using the methodology presented herein, a desired performance level is successfully targeted by adding near-optimal amounts of mass at various locations and tuning the TMDs to dampen several of the structure's frequencies. This is done using analysis tools only.

Fabrication of functional aluminum surface through anodization mode transition (양극산화 모드 전환을 통한 기능성 알루미늄 표면 연구)

  • Park, Youngju;Jeong, Chanyoung
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.417-424
    • /
    • 2022
  • This research develops an easy-to-use, environmentally friendly method for fabricating functional 1050 aluminum alloy surfaces with excellent corrosion resistance. Functional aluminum surfaces with various nanostructures are fabricated by controlling the experimental conditions of anodizing process. The experiment used a multi-step anodizing process that alternates between two different anodizing modes, mild anodizing (MA) and hard anodizing (HA), together with a pore-widening (PW) process. Among them, the nanostructured surface with a small solid fraction shows superhydrophobicity with a contact angle of more than 170° after water-repellent coating. In addition, the surface with superhydrophobicity is difficult for corrosive substances to penetrate, so the corrosion resistance is greatly improved.

Transversal wideband bandpass filter with a wide stopband and multiple transmission zeros

  • Wang, Li-Tian;Xiong, Yang;Wang, Zhi-Peng;Gong, Li
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.133-140
    • /
    • 2021
  • Herein, we present a compact transversal bandpass filter (BPF) with an extremely wide upper stopband and multiple transmission zeros (TZ). Three signal transmission paths with shorted stubs and open-coupled lines allow signal transmission from input port to output port. Two resonant modes can be excited simultaneously and managed easily for bandpass response. Eleven TZs are achieved via transmission path cancelation; an extremely wide upper stopband with an attenuation level better than -12 dB is achieved up to 11.7 f0, where f0 is the center frequency (CF). In addition, bandwidth and CF can be controlled by adjusting electrical lengths. For proof of concept, a wideband BPF centered at 1.04 GHz with 3 dB fractional bandwidths of 49.2% was designed, fabricated, and evaluated. The overall circuit measures 0.045λg × 0.117λg; good agreement was observed between the measured and simulated results.

A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure

  • Rong, Kunjie;Lu, Zheng
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.31-43
    • /
    • 2022
  • A nonlinear gas-spring tuned mass damper is proposed to mitigate the seismic responses of the multi-degree-of-freedom (MDOF) structure, in which the nine-story benchmark model is selected as the controlled object. The nonlinear mechanical properties of the gas-spring are investigated through theoretical analysis and experiments, and the damper's control parameters are designed. The control performance and damping mechanism of the proposed damper attached to the MDOF structure are systematically studied, and its reliability is also explored by parameter sensitivity analysis. The results illustrate that the nonlinear gas-spring TMD can transfer the primary structure's vibration energy from the lower to the higher modes, and consume energy through its own relative movement. The proposed damper has excellent "Reconciling Control Performance", which not only has a comparable control effect as the linear TMD, but also has certain advantages in working stroke. Furthermore, the control parameters of the gas-spring TMD can be determined according to the external excitation amplitude and the gas-spring's initial volume.

Effects of Suspension Compliance and Chassis Flexibility in Handling Performance (현가장치의 유연성과 차체의 탄성효과가 조종안정성에 미치는 영향 분석)

  • Kang, Dong-Kwon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.137-143
    • /
    • 1997
  • In this study, handling simulation of a passenger car is carried out to see the effects of suspension compliance, roll stabilizef bar and chassis flexibility. The front suspension of the car is a MacPherson strut type and the rear suspension is a multi-link type. The following five DADS models are constructed and compared to verify the effects of suspension compliance and chassis flexibility during lane change. (1) Vdhicle model without hard point compliance and stabilizer, (2) Vehicle model with hard point compoiance, (3) Vehicle model with hard point compliance and stabilizer, (4) Vehicle model with hard point compoiance, stabilizer, and one vibration mode of the chaxxis. (5) Vehicle model with hard point compliance, stabilizer, and three vibration modes of the chassis. The result shows that hard point compliance and stabilizer are significant in roll angle, and the flexibility of the chassis affects the yaw angle and yaw rate.

  • PDF

A New Code for Relativistic Hydrodynamics

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2020
  • In an attempt to investigate the nonlinear dynamics such as shock, shear, and turbulence associated with ultra-relativistic jets, we develop a new relativistic hydrodynamics (RHD) code based on the weighted essentially non-oscillatory (WENO) scheme. It is a 5th-order accurate, finite-difference scheme, which has been widely used for solving hyperbolic systems of conservation equations. The code is parallelized with MPI and OpenMP. Through an extensive set of tests, the accuracy and efficiency of different WENO reconstructions, and different time discretizations are assessed. Different implementations of the equation of state (EOS) for relativistic fluid are incorporated, As the fiducial setup for simulations of ultra-relativistic jets, we adopt the EOS in Ryu et al. (2006) to treat arbitrary adiabatic index of relativistic fluid, the WENO-Z reconstructions to minimize numerical dissipation without loss of stability, and the strong stability preserving Runge-Kutta (SSPRK) method to achieve stable time stepping with large CFL numbers. In addition, the code includes a high-order flux averaging along the transverse directions for multi-dimensional problems, and the modified eigenvalues for the acoustic modes to effectively control the carbuncle instability. We find that the new code performs satisfactorily simulations of ultra-relativistic jets.

  • PDF

Digital immersive experiences with the future of shelf painting -From "Kandinsky, the Abstract Odyssey."

  • Feng Tianshi
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.123-127
    • /
    • 2024
  • In the early 20th century, Walter Benjamin analyzed the changes in the value of traditional art forms under the industrial era and the changes in the aesthetic attitude of the masses. A century later, in the contemporary multi-art world, the traditional medium of shelf painting is once again experiencing a similar situation as the last century. Emerging technology display modes such as digital virtual reality and digital immersive experience can achieve digital reproduction of paintings on shelves and reach a certain level of performance, which once again shocks the public's aesthetic perception. This paper attempts to illustrate the outstanding characteristics of the new art form after digital reconstruction by exploring the transformation and sublimation of digital technology to shelf painting. We predict that art research on future reality and augmented reality according to the artificial intelligence era will be conducted in depth in the future.

Availability Assessment of Single Frequency Multi-GNSS Real Time Positioning with the RTCM-State Space Representation Parameters (RTCM-SSR 보정요소 기반 1주파 Multi-GNSS 실시간 측위의 효용성 평가)

  • Lee, Yong-Chang;Oh, Seong-Jong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.107-123
    • /
    • 2020
  • With stabilization of the recent multi-GNSS infrastructure, and as multi-GNSS has been proven to be effective in improving the accuracy of the positioning performance in various industrial sectors. In this study, in view that SF(Single frequency) GNSS receivers are widely used due to the low costs, evaluate effectiveness of SF Real Time Point Positioning(SF-RT-PP) based on four multi-GNSS surveying methods with RTCM-SSR correction streams in static and kinematic modes, and also derive response challenges. Results of applying SSR correction streams, CNES presented good results compared to other SSR streams in 2D coordinate. Looking at the results of the SF-RT-PP surveying using SF signals from multi-GNSS, were able to identify the common cause of large deviations in the altitude components, as well as confirm the importance of signal bias correction according to combinations of different types of satellite signals and ionospheric delay compensation algorithm using undifferenced and uncombined observations. In addition, confirmed that the improvement of the infrastructure of Multi-GNSS allows SF-RT-SPP surveying with only one of the four GNSS satellites. In particular, in the case of code-based SF-RT-SPP measurements using SF signals from GPS satellites only, the difference in the application effect between broadcast ephemeris and SSR correction for satellite orbits/clocks was small, but in the case of ionospheric delay compensation, the use of SBAS correction information provided more than twice the accuracy compared to result of the Klobuchar model. With GPS and GLONASS, both the BDS and GALILEO constellations will be fully deployed in the end of 2020, and the greater benefits from the multi-GNSS integration can be expected. Specially, If RT-ionospheric correction services reflecting regional characteristics and SSR correction information reflecting atmospheric characteristics are carried out in real-time, expected that the utilization of SF-RT-PPP survey technology by multi-GNSS and various demands will be created in various industrial sectors.

Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations (토목관련 천부층 조사에서 다중 모드 표면파 역산의 효과)

  • Feng Shaokong;Sugiyama Takeshi;Yamanaka Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Inversion of multi-mode surface-wave phase velocity for shallow engineering site investigation has received much attention in recent years. A sensitivity analysis and inversion of both synthetic and field data demonstrates the greater effectiveness of this method over employing the fundamental mode alone. Perturbation of thickness and shear-wave velocity parameters in multi-modal Rayleigh wave phase velocities revealed that the sensitivities of higher modes: (a) concentrate in different frequency bands, and (b) are greater than the fundamental mode for deeper parameters. These observations suggest that multi-mode phase velocity inversion can provide better parameter discrimination and imaging of deep structure, especially with a velocity reversal, than can inversion of fundamental mode data alone. An inversion of the theoretical phase velocities in a model with a low velocity layer at 20 m depth can only image the soft layer when the first higher mode is incorporated. This is especially important when the lowest measurable frequency is only 6 Hz. Field tests were conducted at sites surveyed by borehole and PS logging. At the first site, an array microtremor survey, often used for deep geological surveying in Japan, was used to survey the soil down to 35 m depth. At the second site, linear multichannel spreads with a sledgehammer source were recorded, for an investigation down to 12 m depth. The f-k power spectrum method was applied for dispersion analysis, and velocities up to the second higher mode were observed in each test. The multi-mode inversion results agree well with PS logs, but models estimated from the fundamental mode alone show f large underestimation of the depth to shallow soft layers below artificial fill.

Prediction of Heavy-Weight Floor Impact Sound in Multi-unit House using Finite Element Analysis (유한요소해석을 이용한 공동주택의 중량충격음 예측)

  • Mun, Dae-Ho;Lee, Sang-Hyun;Hwang, Jae-Seung;Baek, Gil-Ok;Park, Hong-Gun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.645-657
    • /
    • 2015
  • In this study floor impact noise and structure acceleration response of bare concrete slabs were predicted by using Finite Element Analysis(FEA). Prediction results were compared with experimental results to prove the accuracy of numerical model. Acoustic absorption were addressed by using panel impedance coefficients with frequency characteristics and structural modal damping of numerical model were applied by modal testing results and analysis of prediction and test results. By using frequency response function, the floor acceleration and acoustic pressure responses for various impact sources were calculated at the same time. In the FEA, the natural frequencies and the shapes of vibration and acoustic modes can be estimated through the eigen-value analysis, and it can be visually seen the vibration and sound pressure field and the contribution of major modes.