• Title/Summary/Keyword: multi modal control

Search Result 77, Processing Time 0.041 seconds

A Study on the Dynamic Characteristics of the Bi-modal Tram with All-Wheel-Steering System (전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구)

  • Lee, Soo-Ho;Moon, Kyung-Ho;Jeon, Young-Ho;Lee, Jung-Shik;Kim, Duk-Gie;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.444-450
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

The Analysis of Vibration Due to Magnetic Exciting Force in the Brushless DC Motor (다기 전력 시스템 동적 안정도 향상을 위한 분산 제어 기반 PSS 및 TCSC 제어기 설계)

  • Lee, Seung-Cheol;Seo, Jang-Cheol;Moon, Seung-Ill;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.1
    • /
    • pp.13-19
    • /
    • 2001
  • This paper deals with decentralized control scheme and its application to multi-machine power systems. Decentralized control scheme has several practical advantages, because power system has geographically distributed characteristics. In this paper, decentralized observer-based optimal Power System Stabilizer(PSS) and Thyristor-Controlled Series Capacitor(TCST) controller are designed and tested in WSCC 9 bus system with one TCSC installed. Simulation results show that the proposed decentralized controller has satisfactory performances comparable to the centralized controller. In addition, using modal analysis, this paper shows that the proposed decentralized controller significantly affects only one pair of eigenvalues which have high participation with each generator, while slightly affects other eigenvalues. This result indicates that the application of the decentralized control scheme to enhance power system dynamic stability via excitation control have potential advantages because each low-damped mode occurs dominantly by each decentralized subsystem.

  • PDF

Vibration Control of Laminated Composite Beams using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동제어)

  • Kang, Young-Kyu;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1333-1337
    • /
    • 2000
  • The flexural vibration of laminated composite beams with active and passive constrained-layer damping has been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated beams. The damping ratio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations with active control.

  • PDF

A Study on the Implementation of the Integrated Information System for Emergency Handling in Multi-modal Transfer Stations (복합형 환승센터에서의 상황대응을 위한 통합정보시스템 구축에 관한 연구)

  • Kim, Hyun-Tae;Han, Jeong-Hun;Jang, Bong-Seob;Kim, Hwang-Bae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.87-94
    • /
    • 2008
  • In this study, deals with selection of monitoring objects to handle emergency cases of multi-modal transfer stations and information required for emergency surveillance, recognition, verification, propagation, processing and situation closing. Furthermore, this article suggests integrated management scheme for the above information and methods which offer appropriate information required for situation handling decisions at each stage of situation changes. The transfer station which consists of facilities, passengers, and transportations has limitations in required monitoring information. So, for the situation recognition and handling strategy, case-based reasoning of the expert system was used to apply experience, knowledge, and past cases of situation handling experts. The article also suggests methods to control facilities which are operated at transfer stations and these methods can minimize spatial confusions and damages at the emergency situation. The real time situation information will be shared by proper facility controls to support services from external institutions.

  • PDF

Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof

  • Wang, X.C.;Teng, Q.;Duan, Y.F.;Yun, C.B.;Dong, S.L.;Lou, W.J.
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.545-558
    • /
    • 2020
  • A design method of a Multiple Tuned Mass Damper (MTMD) system is presented for wind induced vibration control of a cable-supported roof structure. Modal contribution analysis is carried out to determine the dominating modes of the structure for the MTMD design. Two MTMD systems are developed for two most dominating modes. Each MTMD system is composed of multiple TMDs with small masses spread at multiple locations with large responses in the corresponding mode. Frequencies of TMDs are distributed uniformly within a range around the dominating frequencies of the roof structure to enhance the robustness of the MTMD system against uncertainties of structural frequencies. Parameter optimizations are carried out by minimizing objective functions regarding the structural responses, TMD strokes, robustness and mass cost. Two optimization approaches are used: Single Objective Approach (SOA) using Sequential Quadratic Programming (SQP) with multi-start method and Multi-Objective Approach (MOA) using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The computation efficiency of the MOA is found to be superior to the SOA with consistent optimization results. A Pareto optimal front is obtained regarding the control performance and the total weight of the TMDs, from which several specific design options are proposed. The final design may be selected based on the Pareto optimal front and other engineering factors.

Design of Friction Dampers installed at a Multi-Story Building under Seismic Load (지진하중을 받는 다층 건물에 설치된 마찰감쇠기 설계)

  • Seong, Ji-Young;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.457-462
    • /
    • 2011
  • In this study, a simplified design procedure for friction dampers of a multi-story structure in order to reduce seismic response is proposed. To get insight for control effect of the structure with friction dampers is difficult, because of a nonlinear characteristic by a friction damper. Since a control force of a friction damper is influenced by coupling velocity between floors, adjoining modes are coupled. Thus structural response are derived by assuming steady-state response in resonance. As it is impossible that an exact solution is obtained for seismic load, first, a closed form solution can be achieved under harmonic vibration. Second, to convert a three-story building into a single-degree-of-freedom(SDOF) structure, modal analysis is performed. Third, an equivalent damping ratio is derived with utilizing closed form solution. And response reducing factor is proposed by it. Finally, friction force of a damper is designed for using response reducing factor, and then designed dampers are verified for seven seismic data. The nonlinear analysis results confirm the validity of the proposed procedure.

Ground Vibration Test for Korea Sounding Rocket - II PFM (과학로켓 2호(KSR-II) 준비행 모델의 지상 진동 시험)

  • 우성현;김홍배;문상무;이상설;문남진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.546-551
    • /
    • 2001
  • Space Test Department at KARI(Korea Aerospace Research Institute) plans to carry out the GVT(Ground Vibration Test) for the KSR(Korea Sounding Rocket)-III FM(Flight Model) which is being developed by Space Technology R&D Division. KSR-III will be an intermediate to the launch vehicle capable of carrying satellites to their orbits. GVT offers very important information to predict the behavior of KSR in its operation, and to develop the flight control and aerodynamic analysis. For development of test facilities, testing and analysis methods which can be used for the future test, Space Test Department has performed the GVT with KSR-II PFM(Proto-Flight Model) at Satellite Integration & Test Center of KARl This paper discusses the procedures, techniques and the results of it. In this test, to simulate free-free condition, test object hung in the air by 4 bungee cords specially devised. The GVT was carried out using pure random excitation technique with MIMO(Multi-Input-Multi-Output) method with three electromagnetic shakers, and poly-reference parameter estimation was used to identify the modal parameters. As the result of the test, 11 mode shapes and modal parameters below 200㎐ were identified and compared with analytical results.

  • PDF

A Study on Dynamic Characteristic for the Bi-modal Tram with All-Wheel-Steering System (전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구)

  • Lee, Soo-Ho;Moon, Kyung-Ho;Jeon, Young-Ho;Park, Tae-Won;Lee, Jung-Shik;Kim, Duk-Gie
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.99-108
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

  • PDF

Placement of Passive Constrained Layer Damping for Vibration Control of Smart Plate (지능판의 진동제어를 위한 수동구속감쇠의 위치 설정)

  • Kang, Young-Kyu;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.310.1-310
    • /
    • 2002
  • Dynamic characteristics of smart laminated composite plates with passive constrained layer damping have been investigated to design structure with maximum possible damping capacity. The equations of motion are derived fur flexural vibrations of symmetrical, multi-layer laminated plates. The damping ratio and modal damping of the first bending and torsional modes are calculated by means of iterative complex eigensolution method. (omitted)

  • PDF

Modelling on Multi-modal Circular Data using von Mises Mixture Distribution

  • Jang, Young-Mi;Yang, Dong-Yoon;Lee, Jin-Young;Na, Jong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.517-530
    • /
    • 2007
  • We studied a modelling process for unimodal and multimodal circular data by using von Mises and its mixture distribution. In particular we suggested EM algorithm to find ML estimates of the mixture model. Simulation results showed the suggested methods are very accurate. Applications to two kinds of real data sets are also included.