• Title/Summary/Keyword: multi issues

Search Result 874, Processing Time 0.026 seconds

A Study on Simulation Analysis for the Transmission Delay on the Process bus network in IEC 61850 Digital Substation (디지털변전소 통합 IED 용 Process Bus 네트워크 통신지연 시뮬레이션 연구)

  • Kim, Seok-Kon;An, Yong-Ho;Jang, Byung-Tae;Choi, Jong-Kee;Lee, Nam-Ho;Han, Jung-Yeol;Lee, You-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.18-22
    • /
    • 2015
  • Digitalization of the substation in Korea has been in progress so far with focusing on Station Bus. However, its application to Process Bus has been delayed due to some technical issues. IEDs based on Process Bus use the data values of SV and GOOSE. As the size of communication data on Process Bus is comparatively bigger than that of Station Bus, it is very important for the evaluating the performance of Process Bus to analyze the transferring speed and quality of data from the first equipment, which is located on process level, to station level. According to the results of related studies, it is said that the most important factor for the design and operation of Process Bus network is the communication delay with consideration of the volume of packets. In the paper, the results of performance test for the network with and without application of VLAN on Process Bus system that uses integrated IEDs are presented. Additionally, the paper proposes the optimal method to analyze the communication delays of network systems through evaluating the maximum delay time, link process ratio and the amount of lost packets by using a simulation tool.

MMJoin: An Optimization Technique for Multiple Continuous MJoins over Data Streams (데이타 스트림 상에서 다중 연속 복수 조인 질의 처리 최적화 기법)

  • Byun, Chang-Woo;Lee, Hun-Zu;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Join queries having heavy cost are necessary to Data Stream Management System in Sensor Network where plural short information is generated. It is reasonable that each join operator has a sliding-window constraint for preventing DISK I/O because the data stream represents the infinite size of data. In addition, the join operator should be able to take multiple inputs for overall results. It is possible for the MJoin operator with sliding-windows to do so. In this paper, we consider the data stream environment where multiple MJoin operators are registered and propose MMJoin which deals with issues of building and processing a globally shared query considering characteristics of the MJoin operator with sliding-windows. First, we propose a solution of building the global shared query execution plan. Second, we solved the problems of updating a window size and routing for a join result. Our study can be utilized as a fundamental research for an optimization technique for multiple continuous joins in the data stream environment.

An Efficient Data Dissemination Protocol for Cluster-based Wireless Sensor Networks (클러스터 기반의 무선 센서네트워크에서 통신량을 줄인 데이터 보급방법)

  • Cho, Ji-Eun;Choe, Jong-Won
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.222-230
    • /
    • 2009
  • A sensor network is an important element of the ubiquitous and it consists of sensor fields that contain sensor nodes and sink nodes that collect data from sensor nodes. Since each sensor node has limited resources, one of the important issues covered in the past sensor network studies has been maximizing the usage of limited energy to extend network lifetime. However, most studies have only considered fixed sink nodes, which created various problems for cases with multiple mobile sink nodes. Accordingly, while maintaining routes to mobile sink nodes, this study aims to deploy the hybrid communication mode that combines single and multi-hop modes for intra-cluster and inter-cluster transmission to resolve the problem of failed data transmission to mobile sink nodes caused by disconnected routes. Furthermore, a 2-level hierarchical routing protocol was used to reduce the number of sensor nodes participating in data transmission, and cross-shape trajectory forwarding was employed in packet transmission to provide an efficient data dissemination method.

Multi-temporal Analysis of Deforestation in Pyeongyang and Hyesan, North Korea

  • Lee, Sunmin;Park, Sung-Hwan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Since forest is an important part of ecological system, the deforestation is one of global substantive issues. It is generally accepted that the climate change is related to the deforestation. The issue is worse in developing countries because the forest is one of important natural resources. In the case of North Korea, the deforestation is on the rise from forest reclamation for firewood collection and food production. Moreover, a secondary effect from flood intensifies the damage. Also, the political situation in North Korea presents difficulty to have in-situ measurements. It means that the accurate information of North Korea is nearly impossible to obtain. Thus, assessing the current situation of the forest in North Korea by indirect method is required. The objective of this study is to monitor the forest status of North Korea using multitemporal Landsat images, from 1980s to 2010s. Since the deforestation in North Korea is caused by local residents, we selected two study areas of high population density: Pyeongyang and Hyesan. In North Korea, most of clean Landsat images are acquired in fall season. The fall images have an advantage that we can easily distinguish agriculture areas from forest areas, also have an disadvantage that the forests cannot be easily identified because some of trees have turned red. To identify the forests exactly, we proposed a modified Normalized Difference Vegetation Index (mNDVI) value. The deforestation in Pyeongyang and Hyesan was analyzed by using mNDVI. The dimension of forest has decreased approximately 36% in Pyeongyang for 27 years and approximately 25% in Hyesan for 16 years. The results show that the forest areas in Pyeongyang and Hyesan have been steadily reduced.

Selective Etching of Magnetic Layer Using CO/$NH_3$ in an ICP Etching System

  • Park, J.Y.;Kang, S.K.;Jeon, M.H.;Yeom, G.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.448-448
    • /
    • 2010
  • Magnetic random access memory (MRAM) has made a prominent progress in memory performance and has brought a bright prospect for the next generation nonvolatile memory technologies due to its excellent advantages. Dry etching process of magnetic thin films is one of the important issues for the magnetic devices such as magnetic tunneling junctions (MTJs) based MRAM. CoFeB is a well-known soft ferromagnetic material, of particular interest for magnetic tunnel junctions (MTJs) and other devices based on tunneling magneto-resistance (TMR), such as spin-transfer-torque MRAM. One particular example is the CoFeB - MgO - CoFeB system, which has already been integrated in MRAM. In all of these applications, knowledge of control over the etching properties of CoFeB is crucial. Recently, transferring the pattern by using milling is a commonly used, although the redeposition of back-sputtered etch products on the sidewalls and the low etch rate of this method are main disadvantages. So the other method which has reported about much higher etch rates of >$50{\AA}/s$ for magnetic multi-layer structures using $Cl_2$/Ar plasmas is proposed. However, the chlorinated etch residues on the sidewalls of the etched features tend to severely corrode the magnetic material. Besides avoiding corrosion, during etching facets format the sidewalls of the mask due to physical sputtering of the mask material. Therefore, in this work, magnetic material such as CoFeB was etched in an ICP etching system using the gases which can be expected to form volatile metallo-organic compounds. As the gases, carbon monoxide (CO) and ammonia ($NH_3$) were used as etching gases to form carbonyl volatiles, and the etched features of CoFeB thin films under by Ta masking material were observed with electron microscopy to confirm etched resolution. And the etch conditions such as bias power, gas combination flow, process pressure, and source power were varied to find out and control the properties of magnetic layer during the process.

  • PDF

Crisis Management Analysis of Foot-and-Mouth Disease Using Multi-dimensional Data Cube (다차원 데이터 큐브 모델을 이용한 구제역의 위기 대응 방안 분석)

  • Noh, Byeongjoon;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.5
    • /
    • pp.565-573
    • /
    • 2017
  • The ex-post evaluation of governmental crisis management is an important issues since it is necessary to prepare for the future disasters and becomes the cornerstone of our success as well. In this paper, we propose a data cube model with data mining techniques for the analysis of governmental crisis management strategies and ripple effects of foot-and-mouth(FMD) disease using the online news articles. Based on the construction of the data cube model, a multidimensional FMD analysis is performed using on line analytical processing operations (OLAP) to assess the temporal perspectives of the spread of the disease with varying levels of abstraction. Furthermore, the proposed analysis model provides useful information that generates the causal relationship between crisis response actions and its social ripple effects of FMD outbreaks by applying association rule mining. We confirmed the feasibility and applicability of the proposed FMD analysis model by implementing and applying an analysis system to FMD outbreaks from July 2010 to December 2011 in South Korea.

Antimicrobial efficacy and safety analysis of zinc oxide nanoparticles against water borne pathogens

  • Supraja, Nookala;Avinash, B.;Prasad, T.N.V.K.V.
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.127-140
    • /
    • 2017
  • Metal nanoparticles have been intensively studied within the past decade. Nano-sized materials have been an important subject in basic and applied sciences. Zinc oxide nanoparticles have received considerable attention due to their unique antibacterial, antifungal, and UV filtering properties, high catalytic and photochemical activity. In this study, microbiological aspects of scale formation in PVC pipelines bacteria and fungi were isolated. In the emerging issue of increased multi-resistant properties in water borne pathogens, zinc oxide (ZnO) nanoparticle are being used increasingly as antimicrobial agents. Thus, the minimum bactericidal concentration (MBC) and minimum fungal concentration of ZnO nanoparticles towards pathogens microbe were examined in this study. The results obtained suggested that ZnO nanoparticles exhibit a good anti fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 30 ppm). ZnO nanoparticles can be a potential antimicrobial agent due to its low cost of production and high effectiveness in antimicrobial properties, which may find wide applications in various industries to address safety issues. Stable ZnO nanoparticles were prepared and their shape and size distribution characterized by Dynamic light scattering (35.7 nm) and transmission electron microscopic TEM study for morphology identification (20 nm), UV-visible spectroscopy (230 nm), X-ray diffraction (FWHM of more intense peak corresponding to 101 planes located at $36.33^{\circ}$ using Scherrer's formula), FT-IR (Amines, Alcohols, Carbonyl and Nitrate ions), Zeta potential (-28.8). The antimicrobial activity of ZnO nanoparticles was investigated against Bacteria and Fungi present in drinking water PVC pipelines biofilm. In these tests, Muller Hinton agar plates were used and ZnO nanoparticles of various concentrations were supplemented in solid medium.

Performance Analysis of Mesh WLANs based on IEEE 802.11 protocols (IEEE 802.11 프로토콜 기반 메쉬 무선랜의 성능분석)

  • Lee, Kye-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.254-259
    • /
    • 2008
  • Mesh WLANs, which consist of wireless mesh routers connecting each other in a mesh topology and self-operate after their autoconfiguration, have several advantages in convenience, swiftness and flexibility of deployment and operation over existing WLANs the expansions of which are done by connecting the APs with wires. However, many technical issues still remain to be solved. Among them, network performance degradations due to the interference between the adjacent hops in multi-hop mesh WLANs, and the reusability of the existing wireless network protocols are critical problems to be answered. This work evaluates the VoIP support performance of IEEE 802.11a/g-based mesh WLANs with multiple wireless interfaces with simulations. The results show that there exit an unfairness in VoIP packet delay performances among mobile routers located at different hops, and that although the capacity of the admitted calls can be increased by increasing the size of voice packet payload it is far less than the expected one. This suggests that the existing 802.11 MAC protocols have their limitation when applied in mesh networks and their enhancement or even a newer one nay be required.

Assessing Spatial Uncertainty Distributions in Classification of Remote Sensing Imagery using Spatial Statistics (공간 통계를 이용한 원격탐사 화상 분류의 공간적 불확실성 분포 추정)

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.383-396
    • /
    • 2004
  • The application of spatial statistics to obtain the spatial uncertainty distributions in classification of remote sensing images is investigated in this paper. Two quantitative methods are presented for describing two kinds of uncertainty; one related to class assignment and the other related to the connection of reference samples. Three quantitative indices are addressed for the first category of uncertainty. Geostatistical simulation is applied both to integrate the exhaustive classification results with the sparse reference samples and to obtain the spatial uncertainty or accuracy distributions connected to those reference samples. To illustrate the proposed methods and to discuss the operational issues, the experiment was done on a multi-sensor remote sensing data set for supervised land-cover classification. As an experimental result, the two quantitative methods presented in this paper could provide additional information for interpreting and evaluating the classification results and more experiments should be carried out for verifying the presented methods.

Instrumentation on structural health monitoring systems to real world structures

  • Teng, Jun;Lu, Wei;Wen, Runfa;Zhang, Ting
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.151-167
    • /
    • 2015
  • Instrumentation on structural health monitoring system imposes critical issues for applying the structural monitoring system to real world structures, for which not only on the configuration and geometry, but also aesthetics on the system to be monitored should be considered. To illustrate this point, two real world structural health monitoring systems, the structural health monitoring system of Shenzhen Vanke Center and the structural health monitoring system of Shenzhen Bay Stadium in China, are presented in the paper. The instrumentation on structural health monitoring systems of real world structures is addressed by providing the description of the structure, the purpose of the structural health monitoring system implementation, as well as details of the system integration including the installations on the sensors and acquisition equipment and so on. In addition, an intelligent algorithm on stress identification using measurements from multi-region is presented in the paper. The stress identification method is deployed using the fuzzy pattern recognition and Dempster-Shafer evidence theory, where the measurements of limited strain sensors arranged on structure are the input data of the method. As results, at the critical parts of the structure, the stress distribution evaluated from the measurements has shown close correlation to the numerical simulation results on the steel roof of the Beijing National Aquatics Center in China. The research work in this paper can provide a reference for the design and implementation of both real world structural health monitoring systems and intelligent algorithm to identify stress distribution effectively.