This paper addresses an indexing scheme capable of efficiently processing range queries in a large-scale trajectory database. After discussing the drawbacks of previous indexing schemes, we propose a new scheme that divides the temporal dimension into multiple time intervals and then, by this interval, builds an index for the line segments. Additionally, a supplementary index is built for the line segments within each time interval. This scheme can make a dramatic improvement in the performance of insert and search operations using a main memory index, particularly for the time interval consisting of the segments taken by those objects which are currently moving or have just completed their movements, as contrast to the previous schemes that store the index totally on the disk. Each time interval index is built as follows: First, the extent of the spatial dimension is divided onto multiple spatial cells to which the line segments are assigned evenly. We use a 2D-tree to maintain information on those cells. Then, for each cell, an additional 3D $R^*$-tree is created on the spatio-temporal space (x, y, t). Such a multi-level indexing strategy can cure the shortcomings of the legacy schemes. Performance results obtained from intensive experiments show that our scheme enhances the performance of retrieve operations by 3$\sim$10 times, with much less storage space.
Characteristics of skin-bulk sea surface temperature (SST) differences in the Northeast Asia seas were analyzed by utilizing 845 collocated matchup data between NOAA/AVHRR data and oceanic in-situ temperature measurements for selected months from 1994 to 2003. In order to understand diurnal variation of SST within a few meters of the upper ocean, the matchup database were classified into four categories according to day-night and drifter-shipboard measurements. Temperature measurements from daytime drifters showed a good agreement with satellite MCSST (Multi-Channel Sea Surface Temperature) with an RMS error of about $0.56^{\circ}C$. Poor accuracy of SST with an rrns error of $1.12^{\circ}C$ was found in the case of daytime shipboard CTD (Conductivity, Temperature, Depth) measurements. SST differences between MCSST and in-situ measurements are caused by various errors coming from atmospheric moist effect, coastal effect, and others. Most of the remarkable errors were resulted from the diurnal variation of vertical temperature structure within a few meters as well as in-situ oceanic temperatures at different depth, about 20 cm for a satellite-tracked drifting buoy and a few meters for shipboard CTD or moored buoy. This study suggests that satellite-derived SST shows significant errors of about ${\pm}3^{\circ}C$ in some cases and therefore it should be carefully used for one's purpose on the base of in-depth understanding of skin-bulk SST difference and vertical temperature structure in regional sea.
This study analyzes Big Data to understand the economic influence of K-Beauty which is expected as a fast-growing industry. Because the content of K-beauty is mainly transmitted over the Internet, Big Data about K-Beauty in the database of online services can show interest and engagement in K-Beauty. The export volume of the beauty industry and the number of foreign tourist in Korea were used as dependent variables. The volume of Google search and the volume of YouTube page view were independent variables. According to the result of a multi-regression analysis, the volume of Google search of K-Beauty had a positive influence on both dependent variables, even after controlling for GDP (Gross Domestic Product) and distances between nations. When it comes to the volume of YouTube page view of K-Beauty, it had a positive relationship with the export volume of the beauty industry, whereas there was no significant relationship between the volume of YouTube page view and the number of foreign tourists. The result indicates that the content of K-Beauty has a significant impact on the beauty industry. Moreover, this empirical study shows that web search and YouTube search have a positive relationship with the economical aspect. These results can be used to discuss public relations strategy to promote K-Beauty industry.
The optical character recognition (OCR) is a technique to extract and recognize texts from images. It is an important preprocessing step in data analysis since most actual text information is embedded in images. Many OCR engines have high recognition accuracy for images where texts are clearly separable from background, such as white background and black lettering. However, they have low recognition accuracy for images where texts are not easily separable from complex background. To improve this low accuracy problem with complex images, it is necessary to transform the input image to make texts more noticeable. In this paper, we propose a method to segment an input image into text lines to enable OCR engines to recognize each line more efficiently, and to determine the final output by comparing the recognition rates of CLAHE module and Two-step module which distinguish texts from background regions based on image processing techniques. Through thorough experiments comparing with well-known OCR engines, Tesseract and Abbyy, we show that our proposed method have the best recognition accuracy with complex background images.
In aged society, it is important to prevent older people from being disability needing long-term care. The purpose of this study is to develop a prediction model to discover high-risk groups who are likely to be beneficiaries of Long-Term Care Insurance. This study is a retrospective study using database of National Health Insurance Service (NHIS) collected in the past of the study subjects. The study subjects are 7,724,101, the population over 65 years of age registered for medical insurance. To develop the prediction model, we used logistic regression, decision tree, random forest, and multi-layer perceptron neural network. Finally, random forest was selected as the prediction model based on the performances of models obtained through internal and external validation. Random forest could predict about 90% of the older people in need of long-term care using DB without any information from the assessment of eligibility for long-term care. The findings might be useful in evidencebased health management for prevention services and can contribute to preemptively discovering those who need preventive services in older people.
Mohd, Mohd Hairil;Thiyahuddin, Mohd Izzat Mohd;Rahman, Mohd Asamudin A;Hong, Tan Chun;Siang, Hii Yii;Othman, Nor Adlina;Rahman, Azam Abdul;Rahman, Ahmad Rizal Abdul;Fitriadhy, Ahmad
Fisheries and Aquatic Sciences
/
v.25
no.9
/
pp.473-488
/
2022
To have a better understanding of the impact of the PETRONAS oil and gas platform on commercial fisheries activities, Universiti Malaysia Terengganu (UMT) examined two approaches which are data collection from satellite and data collection from fishermen and anglers. By profiling the anglers who utilize reefed oil and gas structures for fishing, it can determine if the design and location of the reef platforms will benefit or negatively impacts those anglers and fisherman. Furthermore, this assessment will be contributing to the knowledge regarding the value of offshore oil and gas platforms as fisheries resources. Collectively, the apparent fishing activity data included, combined with the findings in the reefing viability index will help to inform PETRONAS's future decommissioning decisions and may help determine if the design and proposed locations for future rigs-to-reefs candidates would benefit commercial fishing groups, further qualifying them as appropriate artificial reef candidates. The method applied in this study is approaching by using a data satellite known as Google's Global Fishing Watch technology, which is one of the applications to measure commercial fishing efforts around the globe. The apparent commercial fishing effort around the selected twelve PETRONAS platforms was analyzed from January 2012 to December 2018. Using the data collection from fishermen which is the total estimation of commercial fish value cost (in Malaysia ringgit, MYR [RM]) in Peninsular Malaysia Asset, Sabah Asset, and Sarawak Operation region. The data were extracted every month from 2016 to 2018 from the National Oceanic and Atmospheric Administration database. Most of the selected platforms that show a high frequency of vessels around the year are platform KP-A, platform BG-A and platform PL-B. The estimated values of commercial fishes varied between platforms, with ranged from RM 10,209.92 to RM 89,023.78. Thus, platforms with high commercial fish value are selected for reefing in-situ and will serve multi-purposes and benefit the locals as well as the country. The current study has successfully assessed the potential reefing area of the Malaysian offshore environment with greater representativeness and this paper focused on its potential as a new fishing ground.
Attila, Zsolnai;Istvan, Egerszegi;Laszlo, Rozsa;David, Mezoszentgyorgyi;Istvan, Anton
Animal Bioscience
/
v.36
no.1
/
pp.10-18
/
2023
Objective: In this study, we aimed to position the Hungarian Merino among other Merinoderived sheep breeds, explore the characteristics of our sampled animals' genetic similarity network within the breed, and highlight single nucleotide polymorphisms (SNPs) associated with daily weight-gain. Methods: Hungarian Merino (n = 138) was genotyped on Ovine SNP50 Bead Chip (Illumina, San Diego, CA, USA) and positioned among 30 Merino and Merino-derived breeds (n = 555). Population characteristics were obtained via PLINK, SVS, Admixture, and Treemix software, within-breed network was analysed with python networkx 2.3 library. Daily weight gain of Hungarian Merino was standardised to 60 days and was collected from the database of the Association of Hungarian Sheep and Goat Breeders. For the identification of loci associated with daily weight gain, a multi-locus mixed-model was used. Results: Supporting the breed's written history, the closest breeds to Hungarian Merino were Estremadura and Rambouillet (pairwise FST values are 0.035 and 0.036, respectively). Among Hungarian Merino, a highly centralised connectedness has been revealed by network analysis of pairwise values of identity-by-state, where the animal in the central node had a betweenness centrality value equal to 0.936. Probing of daily weight gain against the SNP data of Hungarian Merinos revealed five associated loci. Two of them, OAR8_17854216.1 and s42441.1 on chromosome 8 and 9 (-log10P>22, false discovery rate<5.5e-20) and one locus on chromosome 20, s28948.1 (-log10P = 13.46, false discovery rate = 4.1e-11), were close to the markers reported in other breeds concerning daily weight gain, six-month weight, and post-weaning gain. Conclusion: The position of Hungarian Merino among other Merino breeds has been determined. We have described the similarity network of the individuals to be applied in breeding practices and highlighted several markers useful for elevating the daily weight gain of Hungarian Merino.
Park, Seong Wan;Hwang, Jung Joon;Hwang, Kyu Young;Park, Hee Mun
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.5D
/
pp.797-804
/
2006
A development of regression model for asphalt concrete pavements using Falling Weight Deflectometer deflections is presented in this paper. A backcalculation program based on layered elastic theory was used to generate the synthetic modulus database, which was used to generate 95% confidence intervals of modulus in each layer. Using deflection basins of FWD data used in developing this procedure were collected from Pavement Management System in flexible pavements. Assumptions of back-calculation are that one is 3 layered flexible pavement structure and another is depth to bedrock is finite. It is found that difference of between 95% confidence intervals and modulus ranges of other papers does not exist. So, the data of 95% confidence intervals in each layer was used to develop multiple regression models. Multiple regression equations of each layer were established by SPSS, package of Statics analysis. These models were proved by regression diagnostics, which include case analysis, multi-collinearity analysis, influence diagnostics and analysis of variance. And these models have higher degree of coefficient of determination than 0.75. So this models were applied to predict modulus of domestic asphalt concrete pavement at FWD field test.
Yi, Choong Sung;Choi, Seung An;Shim, Myung Pil;Kim, Hung Soo
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.3B
/
pp.301-310
/
2006
Typically, we needs enormous national budget for the flood control project and so the project usually has big influence on the national economy. Therefore, the reliable estimation of flood damage is the key issue for the economic analysis of the flood control project. This study aims to provide a GIS based technique for distributed flood damage estimation. We consider two aspects of engineering and economic sides, which are the inundation analysis and MD-FDA (Multi-Dimensional Flood Damage Analysis), for the flood damage assessment. We propose the analysis framework and data processing using GIS for assessing flood damages. The proposed methodology is applied to the flood control channel project for flood disaster prevention in Mokgamcheon/Dorimcheon streams and this study presents the detailed GIS database and the assessment results of flood damages. This study may have the worth in improving practical usability of MD-FDA and also providing research direction for combining economic side with the engineering aspect. Also this distributed technique will help decision-making in evaluating the feasibility of flood damage reduction programs for structural and nonstructural measures.
Kim, Soo-Kyung;Park, Jong-Hae;Byun, Young-Tae;Kim, Tae-Hyuk
Management & Information Systems Review
/
v.29
no.2
/
pp.1-25
/
2010
This study attempted to empirically test the determinants of stock returns in Korean stock market applying multi-factor model proposed by Haugen and Baker(1996). Regression models were developed using 16 variables related to liquidity, risk, historical price, price level, and profitability as independent variables and 690 stock monthly returns as dependent variable. For the statistical analysis, the data were collected from the Kis Value database and the tests of forecasting power in this study minimized various possible bias discussed in the literature as possible. The statistical results indicated that: 1) Liquidity, one-month excess return, three-month excess return, PER, ROE, and volatility of total return affect stock returns simultaneously. 2) Liquidity, one-month excess return, three-month excess return, six-month excess return, PSR, PBR, ROE, and EPS have an antecedent influence on stock returns. Meanwhile, realized returns of decile portfolios increase in proportion to predicted returns. This results supported previous study by Haugen and Baker(1996) and indicated that firm-characteristic model can better predict stock returns than CAPM. 3) The firm-characteristic model has better predictive power than Fama-French three-factor model, which indicates that a portfolio constructed based on this model can achieve excess return. This study found that expected return factor models are accurate, which is consistent with other countries' results. There exists a surprising degree of commonality in the factors that are most important in determining the expected returns among different stocks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.