• Title/Summary/Keyword: mucosal delivery

검색결과 44건 처리시간 0.032초

Application of in situ gelling mucoadhesive delivery system for plasmid DNA as a macromolecule

  • Park, Jeong-Sook;Oh, Yu-Kyoung;Kim, Chong-Kook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.236.1-236.1
    • /
    • 2002
  • Mucosal administration of drug or therapeutic gene is emerging as a new route of delivery for systemic and local therapeutics. Previously. in situ gelling system has been applied to chemical drug such as acetaminophen. insulin. prostaglandin E1. and clotrimazole. Plasmid DNA has not been delivered in form of in situ gelling vehicles. To improve the intranasal absorption of plasmid DNA. we designed delivery systems composed of provide of in 냐셔 gelling and mucoadhesive polymers. (omitted)

  • PDF

생체막점착성 하이드로겔을 이용한 황체형성호르몬 유리호르몬의 질점막 수송 (Transvaginal Delivery of Luteinizing Hormone-Releasing Hormone Using Bioadhesive Hydrogel)

  • 한건;박희범;박정숙;정연복
    • Journal of Pharmaceutical Investigation
    • /
    • 제27권1호
    • /
    • pp.15-22
    • /
    • 1997
  • The mucosal route of administration(nasal, buccal, conjunctival and vaginal) has recently been considered as an alternative to parenteral delivery for many peptide drugs because enzymatic degradation of these agents may be partly avoided. The objective of these study was to establish the optimal mucosal administration dosage form of $LHRH/[D-Ala^6]LHRH$, based on presystemic metabolism. We reported previously the peptidase inhibition effect of medium chain fatty acid salts(sodium caprylate, soadium caprate and sodium laurate), EDTA and STDHF on the proteolysis of $LHRH/[D-Ala^6]LHRH$ in rabbit mucosal homgenates. We also reported that EDTA, STDHF and sodium laurate markedly increased the potency of $LHRH/[D-Ala^6]LHRH$ solution applied vaginally. In the present study, by administration of polycarbophil hydrogel containing LHRH the ovulation inducing activity was 3.3 times greater than solution. These results indicate not only peptidase inhibitor but also polycarbophil hydrogel significantly improved the absorption of this drug. The results of this study would provide the feasibility as a rational dosage form for improving bioavailability and self administration of this hydrogel by the vaginal application.

  • PDF

A Molecular Mucosal Adjuvant To Enhance Immunity Against Pneumococcal Infection In The Elderly

  • Fukuyama, Yoshiko;Ikeda, Yorihiko;Ohori, Junichiro;Sugita, Gen;Aso, Kazuyoshi;Fujihashi, Keiko;Briles, David E.;McGhee, Jerry R.;Fujihashi, Kohtaro
    • IMMUNE NETWORK
    • /
    • 제15권1호
    • /
    • pp.9-15
    • /
    • 2015
  • Streptococcus pneumoniae (the pneumococcus) causes a major upper respiratory tract infection often leading to severe illness and death in the elderly. Thus, it is important to induce safe and effective mucosal immunity against this pathogen in order to prevent pnuemocaccal infection. However, this is a very difficult task to elicit protective mucosal IgA antibody responses in older individuals. A combind nasal adjuvant consisting of a plasmid encoding the Flt3 ligand cDNA (pFL) and CpG oligonucleotide (CpG ODN) successfully enhanced S. pneumoniae-specific mucosal immunity in aged mice. In particular, a pneumococcal surface protein A-based nasal vaccine given with pFL and CpG ODN induced complete protection from S. pneumoniae infection. These results show that nasal delivery of a combined DNA adjuvant offers an attractive potential for protection against the pneumococcus in the elderly.

황체호르몬 유리호르몬(LHRH)의 경점막 수송: 토끼 점막균질액 중에서 $[D-Ala^6]$ LHRH의 효소적 분해 특성 및 중쇄지방산염의 안정화 효과 (Transmucosal Delivery of Luteinizing Hormone-Releasing Hormone(LHRH): Enzymatic Proteolysis of $[D-Ala^6]$ LHRH and Inhibitory Effect of Medium Chain Fatty Acid Salts in Rabbit Mucosa)

  • 박정숙;정연복;한건
    • 약학회지
    • /
    • 제38권2호
    • /
    • pp.202-210
    • /
    • 1994
  • To investigate the feasibility of mucosal delivery of $[D-Ala^6]$ LHRH, a potent analogue of LHRH, enzymatic proteolysis of $[D-Ala^6]$ LHRH and inhibitory effect of medium chain fatty acid salts(MFA) were studied using rabbit mucosal homogenate. $[D-Ala^6]$ LHRH incubated in homogenates of rectal(RE), nasal(NA) and vaginal(VA) mucosa were assayed by HPLC. The degradation of $[D-Ala^6]$ LHRH followed the first order kinetics. The degradation products were found as $[D-Ala^6]$ $LHRH^{1-7}$(m-i), to a lesser extent, $[D-Ala^6]$ $LHRH^{1-9}$(m-ii) and $[D-Ala^6]$ $LHRH^{1-3}$(m-iii) by the method of amino acid analysis(PITC method). The formation of$[D-Ala^6]$ $LHRH^{1-7}$ was not inhibited by the addition of disodium ethylenediaminetetraacetic acid but inhibited by sodium tauro-24,25-dihydrofusidate, suggesting that endopeptidase 24.11(EP 24.11) cleaves the $Leu^7-Arg^8$ bond of $[D-Ala^6]$ LHRH and is the primary $[D-Ala^6]$ LHRH degrading enzyme. The patterns of $[D-Ala^6]$ LHRH degradation indicated that EP 24.11 exists in each mucosal homogenate with the order of RE>NA>VA. MFA significantly inhibited the proteolysis of $[D-Ala^6]$ LHRH. The addition of sodium caprate(1.0%) or sodium laurate(0.5%) to the each mucosal homogenate completely protected $[D-Ala^6]$ LHRH from the degradation.

  • PDF

Mucosal Administration of Lactobacillus casei Surface-Displayed HA1 Induces Protective Immune Responses against Avian Influenza A Virus in Mice

  • Dung T. Huynh;W.A. Gayan Chathuranga;Kiramage Chathuranga;Jong-Soo Lee;Chul-Joong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.735-745
    • /
    • 2024
  • Avian influenza is a serious threat to both public health and the poultry industry worldwide. This respiratory virus can be combated by eliciting robust immune responses at the site of infection through mucosal immunization. Recombinant probiotics, specifically lactic acid bacteria, are safe and effective carriers for mucosal vaccines. In this study, we engineered recombinant fusion protein by fusing the hemagglutinin 1 (HA1) subunit of the A/Aquatic bird/Korea/W81/2005 (H5N2) with the Bacillus subtilis poly γ-glutamic acid synthetase A (pgsA) at the surface of Lactobacillus casei (pgsA-HA1/L. casei). Using subcellular fractionation and flow cytometry we confirmed the surface localization of this fusion protein. Mucosal administration of pgsA-HA1/L. casei in mice resulted in significant levels of HA1-specific serum IgG, mucosal IgA and neutralizing antibodies against the H5N2 virus. Additionally, pgsA-HA1/L. casei-induced systemic and local cell-mediated immune responses specific to HA1, as evidenced by an increased number of IFN-γ and IL-4 secreting cells in the spleens and higher levels of IL-4 in the local lymphocyte supernatants. Finally, mice inoculated with pgsA-HA1/L. casei were protected against a 10LD50 dose of the homologous mouse-adapted H5N2 virus. These results suggest that mucosal immunization with L. casei displaying HA1 on its surface could be a potential strategy for developing a mucosal vaccine against other H5 subtype viruses.

Buccal Mucosal Ulcer Healing Effect of rhEGF by Using Mucoadhesive Formulations

  • Park, Jeong-Sook;Kang, Soo-Hyun;Li, Hong;Han, Kun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.235.2-235
    • /
    • 2003
  • To develop the buccal delivery system of rhEGF for the treatment of buccal mucosal ulcer, polymer films and hydrogels were investigated. Methods: Hydrogels for thermosenstive sol/gel systems were prepared by the cold method (Schmolka, 1972). And mucoadhesive films were prepared by mixing sod. alginate/polycarbophil 974p. To find an optimum buccal mucosal adhesive gel or film, the gel strength of the poloxamer and sod. alginate/polycarbophil 974p hydrogels were determined by the Simple Rheology Method and their mucoadhesiveness were measured by the Instron (M 4400, Instron Co., U.S.A.) method. (omitted)

  • PDF

Evaluation of systemic and mucosal immune responses in mice administered with novel recombinant Salmonella vaccines for avian pathogenic Esherichia coli

  • Oh, In-Gyeong;Lee, John Hwa
    • 대한수의학회지
    • /
    • 제53권4호
    • /
    • pp.199-205
    • /
    • 2013
  • Avian pathogenic Escherichia coli (APEC) is a causative agent for a number of extra intestinal diseases and account for significant losses to the poultry industry. Since protective immunity against APEC is largely directed to virulence antigens, we have individually expressed four different viulence antigens, papA, papG, IutA, and CS31A, using an attenuated Salmonella Typhimurium and a plasmid pBB244. Following oral immunization of mice with combination of two or four of these strains, serum IgG and mucosal IgA responses were elicited against each antigen represented in the mixture. The antigen-specific mucosal IgA responses were significantly higher in the group of mice immunized with the heat-labile Escherichia coli enterotoxin B subunit (LTB) strain than those in the group of mice immunized without the LTB strain. While, there was no significant difference between these two groups in antigen-specific serum IgG responses. The results showed that LTB could act as mucosal immune adjuvant. To assess the nature of immunity, the distribution of antigen-specific IgG isotypes was analyzed. All groups promoted Th1-type immunity as determined by the IgG2a/IgG1 ratio. Thus, our findings provided evidence that immunization with a combination of several vaccine strains is one of the strategies of developing effective vaccines against APEC.

Buccal Mucosal Ulcer Healing Effect of rhEGF/Eudispert hv Hydrogel

  • Park, Jeong-Sook;Yoon, Joon-Il;Li, Hong;Moon, Dong-Cheul;Han, Kun
    • Archives of Pharmacal Research
    • /
    • 제26권8호
    • /
    • pp.659-665
    • /
    • 2003
  • We have studied the effect of rhEGF on the buccal mucosal ulcer healing. rhEGF was rapidly degraded upon incubation with the hamster buccal mucosal homogenates; The degradation of rhEGF was significantly inhibited by sodium lauryl sulfate (SLS). Eudispert hv hydrogel and Polycarbophil 974P hydrogel were prepared for rhEGF delivery and their mucoadhesiveness was measured by the $Instron^R$ method. The mucoadhesive force of Eudispert hv was significantly greater than that of Polycarbophil 974P. Moreover, rhEGF in Eudispert hv hydrogel remained stable for about 2 months. To evaluate the ulcer healing effect of rhEGF, the buccal mucosal ulcer was induced in golden hamsters using acetic acid. At 24 h after administration of rhEGF/Eudispert hv hydrogel, the ulcerous area was decreased compared with rhEGF solution and, as a result, the curative ratio was $36.8\pm5.68$%. By the addition of SLS (0.5%) to Eudispert hv hydrogel, the curative ratio increased 1.5 times. The mechanism of the action was probably due to a combination of protection of the drug against proteases present in mucosa and prolongation of the release of rhEGF from the formulation at the site of action.

항원 생산 기반으로서의 식물 연구 (Plants as platforms for the production of vaccine antigens)

  • 염정원;전재흥;정혁;김현순
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.250-261
    • /
    • 2010
  • The expression of vaccine antigens in transgenic plants has the potential to provide a convenient, stable, safe approach for oral vaccination alternative to traditional parenteral vaccines. Over the past two decades, many different vaccine antigens expressed via the plant nuclear genome have elicited appropriate immunoglobulin responses and have conferred protection upon oral delivery. Up to date, efforts to produce antigen proteins in plants have focused on potato, tobacco, tomato, banana, and seed (maize, rice, soybean, etc). The choice of promoters affects transgene transcription, resulting in changes not only in concentration, but also in the stage tissue and cell specificity of its expression. Inclusion of mucosal adjuvants during immunization with the vaccine antigen has been an important step towards the success of plant-derived vaccines. In animal and Phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Future areas of research should further characterize the induction of the mucosal immune response and appropriate dosage for delivery system of animal and human vaccines. This article reviews the current status of development in the area of the use of plant for the development of oral vaccines.