• 제목/요약/키워드: mucin 5AC

검색결과 76건 처리시간 0.022초

Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

  • Seo, Hyo-Seok;Sikder, Mohamed Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.525-531
    • /
    • 2014
  • In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-${\alpha}$ for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-${\alpha}$ in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-${\alpha}$-induced nuclear factor kappa B (NF-${\kappa}B$) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-${\kappa}B$ activation induced by TNF-${\alpha}$. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha ($I{\kappa}B{\alpha}$) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-${\kappa}B$ signaling pathway in airway epithelial cells.

Effects of Inhibiting Glycoprotein MUC5AC by Seaweed Ecklonia cava Extract in human Airway Epithelial Cells

  • Lee, Sung-Gyu;Kwon, Sang-Oh
    • 대한의생명과학회지
    • /
    • 제27권4호
    • /
    • pp.334-339
    • /
    • 2021
  • In the present study, antioxidant and MUC5AC mucin inhibition activities were measured in Ecklonia cava (E. cava) extract. The E. cava extract showed the total polyphenol and flavonoid contents of 607.40±19.44 ㎍ GAE/mg and 13.33±5.28 ㎍ QE/mg, respectively. The free radical scavenging activity of E. cava extract was high in the DPPH radical scavenging activity (RC50 7.08 ㎍/mL) and ABTS+ radical scavenging activity (RC50 4.74 ㎍/mL). Also, we investigated whether E. cava extract affects airway MUC5AC mucin gene expression, production and secretion induced by phorbol 12-myristate 13-acetate (PMA) from NCI-H292 cells. Cells were treated with E. cava extract and then stimulated with PMA for 24 h. The E. cava extract inhibited the gene expression of MUC5AC mucin from NCI-H292 cells. This result suggests that E. cava extract can inhibit the gene expression of mucin induced by PMA through directly acting on airway epithelial cells.

가미신기탕(加味腎氣湯) 등 수종(數種) 방제(方劑)가 일차배양 호흡기 상피세포에서의 점액 분비에 미치는 영향 (Studies on the Effects of Several Oriental Herbal Medicines on mucin secretion from Primary Cultured Respiratory)

  • 김윤희;김정숙
    • 대한한방소아과학회지
    • /
    • 제20권1호
    • /
    • pp.109-135
    • /
    • 2006
  • Objective : In the present study, the author tried to investigate whether six oriental medical prescriptions named gamisingitang (SGT), gamijungtang (IJT), gamicheongpyetang (CPT), galhwengchihyosan (CHS), chwiyeontong (CYT), sigyoungcheongpyetang (SCPT) significantly affect mucin release from cultured hamster tracheal surface epithelial (HTSE) cells. Methode : Confluent HTSE cells were inetabolically radiolabeled with $^{3}H-glucosamine$ for 24 hrs and chased for 30 min in the presence of drugs aforementioned, respectively, to assess the effect of each drug on $^{3}H-mucin$ release. Possible cytotoxicities of effective drugs were assessed by measuring lactate dehydrogenase(LDH) release. Additionally, total elution profiles of control spent media and treatment sample (CPT, CHS, SCPT and CYT) through Sepharose CL-4B column were analysed and effect of CPT, CHS and CYT on MUC5AC mRNA expression in cultured HTSE cells were invsetigated. Results : (1) SGT and IJT did not affect mucin release without cytotoxicity; (2) CPT, SCPT and CHS significantly stimulated mucin release from cultured HTSE cells, with significant cytotoxicity; (4) CPT, CHS, SCPT and CYT chiefly affected the 'mucin' release and did not affect significantly the release of the releasable glycoproteins with less molecular weight than mucin. This result suggests that the four herbal prescriptions specifically affect the release of mucin ; (5) CTP and CHS did not significantly affect the expression levels of MUC 5AC mRNA, however, CYT significantly inhibit the expression levels of MUC 5AC mRNA. Conclusion : CYT can decrease the synthesis of mucin at gene level in cultured HTSE cells.

  • PDF

금수육군전(金水六君煎)이 이산화황으로 유발된 흰쥐의 호흡기 점액 및 뮤신생성에 미치는 영향 (Effect of Geumsuyukgunjeon on Airway Mucus Secretion and Mucin Production)

  • 김은진;민상연;김장현
    • 대한한방소아과학회지
    • /
    • 제29권2호
    • /
    • pp.26-36
    • /
    • 2015
  • Objectives In this study, effect of Geumsuyukgunjeon (GYJ) on the increase in airway epithelial mucosubstances of rats with acute bronchitis and EGF-induced MUC5AC mucin production from human airway epithelial cells were investigated. Materials and Methods Hypersecretion of airway mucus was induced by exposure of rats to SO2 during 3 weeks. Effect of orally-administered GYJ during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats was assesed using histopathological analysis after staining the epithelial tissue with PAS-alcian blue. Possible cytotoxicity of GYJ was assessed by examining the potential damage of kidney and liver functions by measuring serum GOT/GPT activities and serum BUN and creatinine concentrations of rats and the body weight gain during experiment, after administering GYJ orally. Effect of GYJ on EGF-induced MUC5AC mucin production from human airway epithelial cells (A549) was investigated. Confluent A549 cells were pretreated for 30 min in the presence of GYJ and treated with EGF (25 ng/ml) for 24 hrs, to assess the effect of GYJ on EGF-induced MUC5AC mucin production using enzyme-linked immunosorbent assay (ELISA). Results (1) GYJ decreased the amount of intraepithelial mucosubstances of trachea of rats. (2) GYJ did not show kidney and liver toxicities and did not affect body weight gain of rats during experiment. (3) GYJ significantly inhibited EGF-induced MUC5AC mucin production from A549 cells. Conclusions The result from the present study suggests that GYJ might control both the mucus hypersecretion in vivo and do not show in vivo toxicity to liver and kidney functions after oral administration and the production of pulmonary mucin.

가미육군자탕(加味六君子湯)이 호흡기 뮤신분비 및 뮤신 유전자 발현에 미치는 영향 (Effect of Gamiyukgunja-tang on Secretion and Gene Expression of Airway Mucin)

  • 박양춘
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.98-103
    • /
    • 2007
  • In the present study, the author intended to investigate whether Gamiyukgunja-tang (Jiaweiliujunzi-tang, GYGT) significantly affect both mucin release from and MUC5AC gene expression in cultured hamster tracheal surface epithelial (HTSE) cells. Confluent HTSE cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of GYGT to assess the effect on 3H-mucin release. Possible cytotoxicity of the agent was assessed by measuring lactate dehydrogenase (LDH) release. Total elution profiles of control spent media and treatment sample through Sepharose CL-4B column were analysed and effect of GYGT on MUC5AC gene expression in cultured HTSE cells were investigated. GYGT did not affect mucin release from cultured HTSE cells. GYGT did not show significant cytotoxicity. GYGT also did not affect the secretion of the other releasable glycoproteins with less molecular weight than mucin. GYGT increased the expression level of MUC5AC gene. We suggest that the effect of GYGT with their components should be further investigated through ongoing research.

Diclofenac Inhibits Phorbol Ester-Induced Gene Expression and Production of MUC5AC Mucin via Affecting Degradation of IkBα and Translocation of NF-kB p65 in NCI-H292 Cells

  • Jin, Fengri;Li, Xin;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제28권5호
    • /
    • pp.431-436
    • /
    • 2020
  • In this study, diclofenac, a non-steroidal anti-inflammatory drug, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. The human respiratory epithelial NCI-H292 cells were pretreated with diclofenac for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of diclofenac on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated. Diclofenac suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest diclofenac regulates the gene expression and production of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.

필용방감길탕이 기도 뮤신의 분비, 생성, 유전자 발현 및 점액 과다 분비에 미치는 영향 (Effect of Piryongbanggamgil-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus)

  • 김윤영;민상연;김장현
    • 대한한방소아과학회지
    • /
    • 제28권2호
    • /
    • pp.56-71
    • /
    • 2014
  • Objectives In this study, the author tried to investigate whether piryongbang-gamgil-tang (PGGT) significantly affect in vitro airway mucin secretion, PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production / gene expression from human airway epithelial cells and increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats. Materials and Methods For in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of PGGT to assess the effect of PGGT on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effect of PGGT on PMA- or EGFor TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of PGGT and treated with PMA (10 ng/ml) or EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to assess both effect of PGGT on PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by ELISA and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). For in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered PGGT during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assesed by using histopathological analysis after staining the epithelial tissue with alcian blue. Possible cytotoxicities of PGGT in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of PGGT were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering PGGT orally. Results (1) PGGT did not affect in vitro mucin secretion from cultured RTSE cells. (2) PGGT significantly inhibited PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. (3) PGGT decreased the amount of intraepithelial mucosubstances and showed the tendency of expectorating airway mucus already produced. (4) PGGT increased LDH release from RTSE cells. However, PGGT did not show in vivo liver and kidney toxicities and cytotoxicity to NCI-H292 cells. Conclusion The result from this study suggests that PGGT can regulate the production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of PGGT with their components should be further studied using animal experimental models that reflect the diverse pathophysiology of respiratory diseases through future investigations.

Meclofenamate Suppresses MUC5AC Mucin Gene Expression by Regulating the NF-kB Signaling Pathway in Human Pulmonary Mucoepidermoid NCI-H292 Cells

  • Jiho Ryu;Kyung-il Kim;Rajib Hossain;Misoon Lee;Jin Tae Hong;Hyun Jae Lee;Choong Jae Lee
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.306-311
    • /
    • 2023
  • The current study aimed to reveal the potential effect of meclofenamate, a nonsteroidal anti-inflammatory drug, on the gene expression of airway MUC5AC mucin. Human pulmonary mucoepidermoid NCI-H292 cells were pretreated with meclofenamate for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. Thereafter, the effect of meclofenamate on the PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was assessed. Meclofenamate inhibited glycoprotein production and mRNA expression of MUC5AC mucins induced by PMA by inhibiting the degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest meclofenamate suppresses mucin gene expression by regulating NF-kB signaling pathway in human pulmonary epithelial cells.

상지(桑枝) 목초액이 호흡기 객담 과다분비에 미치는 영향 (Effect of Wood Vinegar Produced from Morus alba on Hypersecretion of Airway Mucus)

  • 김호;정혜미;김솔리;서운교
    • 대한한방내과학회지
    • /
    • 제31권3호
    • /
    • pp.650-666
    • /
    • 2010
  • Objectives : In this study, the author tried to investigate whether wood vinegar produced from Morus alba (MA) significantly affects the increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats, and in vitro airway mucin secretion and PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production / gene expression from human airway epithelial cells. Materials and Methods : For the in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to SO2 over 3 weeks. Effect of orally-administered MA over 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assessed using histopathological analysis after staining the epithelial tissue with alcian blue. For the in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of MA to assess the effect of MA on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of MA and treated with PMA (10 ng/ml), EGF (25 ng/ml) or TNF-alpha (0.2 nm) for 24 hrs, to assess both effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production by enzyme-linked immunosorbent assay (ELISA) and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). Possible cytotoxicities of MA in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of MA were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering MA orally. Results : 1. MA decreased the amount of intraepithelial mucosubstances of rats exposed to sulfur dioxide inhalationally. 2. MA decreased in vitro mucin secretion from cultured RTSE cells. 3. MA significantly inhibited PMA-, EGF-, and TNF-alpha-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. 4. MA did not show either in vitro or in vivo hepatic or renal toxicities. Conclusion : The results from this study suggests that MA can regulate the secretion, production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and does not show in vivo toxicity to liver and kidney functions after oral administration. Effects of MA should be further studied using animal experimental models that simulate the diverse pathophysiology of respiratory diseases via future research.

가미청폐탕, 가감정기탕, 가미사물탕, 가미이중탕이 호흡기 뮤신의 분비 및 뮤신 유전자의 발현에 미치는 영향 (Effects of Four Oriental Medicines on Secretion and Gene Expression of Mucin in Airway Epithelial Cells)

  • 이현숙;민상연;김장현
    • 대한한방소아과학회지
    • /
    • 제31권2호
    • /
    • pp.1-13
    • /
    • 2017
  • Objectives In this study, the author intended to investigate whether Gami-cheongpetang (GCP), Gagam-jeongkitang (GJG), Gami-samooltang (GSM) and Gami-ijoongtang (GIJ) significantly affect in vivo (animal model) and in vitro (cultured cells) mucin secretion and MUC5AC gene expression in airway epithelial cells. Methods For in vivo experiment, the author induced hypersecretion of airway mucin in rats by introducing SO2 for 3 weeks. Enzyme-linked immunosorbent assay (ELISA) was used to assess the effects of orally-administered GCP, GJG, GSM and GIJ in vivo mucin secretion from tracheal goblet cells of rats after 1 week. Also, the effects of the agents on TNF- or EGF-induced MUC5AC gene expression in human airway epithelial cells (NCI-H292) were investigated. Possible cytotoxicities of the agents were assessed by examining the rate of survival and proliferation of NCI-H292 cells. Results (1) GCP and GJG significantly inhibited hypersecretion of in vivo mucin, although GSM and GIJ did not affect hypersecretion of in vivo mucin; (2) GCP and GJG significantly increased in vitro mucin secretion from cultured HTSE cells. However, GSM and GIJ did not affect in vitro mucin secretion from HTSE cells; (3) GCP and GJG significantly inhibited the expression levels of EGF-induced MUC5AC gene in NCI-H292 cells. However, GSM and GIJ increased the expression levels of EGF-induced MUC 5AC gene in NCI-H292 cells; (4) GCP, GJG, GSM and GIJ did not significantly inhibit the survival and proliferation of NCI-H292 cells. Conclusions These results suggest that GCP, GJG, GSM and GIJ can not only affect the secretion of mucin but also affect the expression of mucin gene. The author suggests that the effects of GCP, GJG, GSM and GIJ with their components should be further investigated by using animal experimental models that simulate the diverse pathophysiology of pulmonary diseases.