• Title/Summary/Keyword: mt DNA gene

Search Result 201, Processing Time 0.024 seconds

Isolation and Characterization of a Novel Triolein Selective Lipase from Soil Environmental Genes

  • Lim, Hee Kyung;Han, Ye-Jin;Hahm, Moon-Sun;Park, Soo Youl;Hwang, In Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.480-490
    • /
    • 2020
  • A novel lipase gene, Lip-1420, was isolated from a metagenomic library constructed from reed marsh from Mt. Jumbong in Korea, comprising 112,500 members of recombinant plasmids. The DNA sequence of Lip-1420-subclone (5,513 bp) was found to contain at least 11 ORFs according to the GenBank database. The ORF-3 gene was inserted into the pET21a plasmid containing the C-terminal 6-His tag and transformed into E. coli BL21(DE3) to express the recombinant lipase protein. Lip-1420 was purified using a fast protein liquid chromatography system. The gene was registered in GenBank (MH628529). The values of Km and Vmax were determined as 0.268 mM and 1.821 units, respectively, at 40℃ and pH 8.0, using p-nitrophenyl palmitate as the substrate. This lipase belongs to family IV taxonomically because it has conserved HGGG and GDSAG motifs in the constitutive amino acid sequence. According to the predicted structural model, the binding sites are represented by residues H78, G81, D150, S151, A152, V181, and D236. Finally, Lip-1420 showed triolein selectivity for methanolysis between triolein (18:1) and tristearin (18:0) substrates. Further study of the selective mechanism and structure-function relationship of this new lipase could be useful for more practical applications.

Phylogenetic Analysis Using Cytochrome c Oxidase Subunit I of Silver Croaker(Pennahia argentata) Mitochondria DNA (미토콘드리아 DNA의 cytochrome c oxidase subunit I을 이용한 보구치(Pennahia argentata) 계통 분석)

  • Park, Jae-Won;Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.3
    • /
    • pp.265-274
    • /
    • 2020
  • Silver croaker (Pennahia argentata) is a turbulent species that is widely distributed worldwide and is mainly found in the bottom of the ocean. In the study, we characterized the cytochrome c oxidase subunit I (COI) gene of the mitochondrial DNA (mtDNA) on P. argentata inhabiting Gwangyang Bay and analyzed the phylogenetic location of marine fish species. As a result of multiple arrangement of 605 bp COI sequences, high homology of mtDNA nucleotide sequences was confirmed in the silver croakers from Gwangyang Bay (98~100%). However, the nucleotide variation was different according to the catching points of the inland and the open seas of Gwangyang Bay. The nucleotide sequence variation in COI was high in P. argentata from the open seas of Gwangyang Bay (43.2~70.3%). Furthermore, the phylogenetic analysis of 13 fish showed that P. argentata from Gwangyang Bay were grouped into one clade with P. argentata reported in Taiwan, and the evolutionary distance was 0.036. In addition, it was identified that the evolutionary distance was close to that of fish belonging to the Mi-iuy croaker (Miichthys miiuy) and the Big-head pennah croaker (Pennahia Macrocephalus) (0.041~0.048). The result of these studies will be used as the key genetic information for fisheries resources monitoring and species diversity management according to the coastal environment.

The Efficacy of Enhanced Growth by Ectopic Expression of Ghrelin and Its Variants Using Injectable Myogenic Vectors

  • Xie, Q.F.;Wu, C.X.;Meng, Q.Y.;Li, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.146-152
    • /
    • 2004
  • Ghrelin is an acylated peptide recently identified as the endogenous ligand for the growth hormone (GH) secretagogues receptor 1a (GHS-R1a) and is involved in a novel system for regulating GH release. To understand the long-term effects of ghrelin, here we constructed six myogenic expression vectors containing the cDNA of swine mature ghrelin (pGEM-wt-sGhln, pGEM-wt-hGhln), ghrelin mutant of $Ser^3$ with $Trp^3$ (pGEM-mt-sGhln, pGEM-mt-hGhln) and truncated ghrelin derivative (pGEM-tmtsGhln, pGEM-tmt-hGhln) encompassing the first 7 residues of ghrelin (including $Ser^3$ substituted with $Trp^3$) and adding a basic amino acid, Lys (K) in the C-terminus. The constructs, pGEM-wt-sGhln, pGEM-mt-sGhln and pGEM-tmt-sGhln were linked with the ghrelin leader sequence, while the pGEM-wt-hGhln, pGEM-mt-hGhln and pGEM-tmt-hGhln were linked with a leader sequence from the human growth hormone releasing hormone (hGHRH). Intramuscular injection of 200 ${\mu}g$ pGEM-wt-sGhln or pGEM-tmt-sGhln augmented growth over 3 weeks in normal rats and peaked at day 21 or 14 post-injection respectively, whose body weight gains were on average approximately 6% or 19% heavier over controls. However, other injectable vectors had no such enhanced growth effects. Our results suggested that the efficacy of the ghrelin leader sequence was more effective than that of hGHRH in our system. Moreover, the results indicated that skeletal muscle might have the ability to posttranslationally modify the in vivo expressed ghrelin. And the most strikingly, the short ghrelin analog seems to mimic the biological effects more efficiently when compared with the full-length ghrelin.

Systematic Relationships of Korean Freshwater Snails of Semisulcospira, Koreanomelania, and Koreoleptoxis (Cerithiodiea; Pleuroceridae) revealed byMitochondrial Cytochrome Oxidase I Sequences

  • Kim, Woo-Jin;Kim, Dae-Hee;Lee, Jun-Sang;Bang, In-Chul;Lee, Wan-Ok;Jung, Hyung-Taek
    • The Korean Journal of Malacology
    • /
    • v.26 no.4
    • /
    • pp.275-283
    • /
    • 2010
  • Many freshwater snail taxa are difficult to identify using morphological traits due to phenotypic plasticity. However, using of molecular DNA marker in combination with morphological traits can provide a reliable means for discriminating among freshwater snail taxa including cryptic species. To discriminate among Korean freshwater snail taxa and resolve their systematic relationships, wesequenced a fragment of mtDNA cytochrome oxidase I (COI) gene from 82 specimens collected from ten different sites distributed along the Korean peninsula. We identified more than seven freshwater snail taxa including cryptic species in Korea. Whereas traditional shell morphology of freshwater snails offers only weak discriminatory power for recognizing 'good' taxa, DNA sequence data provided positive and reliable identification. In addition, a major Semisulcospira clade was clearly separated from the remaining lineages observed including cryptic species. However, a phylogenetic tree inferred from the COI gene data did not fully resolve systematic relationships among pleurocerid taxa in Korea. Establishing more robust shell characteristics for identifying taxa unambiguously and hence improving traditional key shell morphology characters for freshwater snail species is an urgent requirement and will require more rigorous examination of all nominal taxa. While molecular data generated here will be useful for species identification and for describing the systematic relationships among Korean freshwater snails, further analysis will be required.

Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes

  • Jin, Mei;Zhang, Jun-yan;Chu, Ming-xing;Piao, Jun;Piao, Jing-ai;Zhao, Feng-qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.650-657
    • /
    • 2018
  • Objective: The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods: cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results: In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion: Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth $factor-{\beta}$ ($TGF-{\beta}$) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on $TGF-{\beta}$ signaling pathway and inhibit each other to affect the hair growth.

Oxidative Stress Induced Damage to Paternal Genome and Impact of Meditation and Yoga - Can it Reduce Incidence of Childhood Cancer?

  • Dada, Rima;Kumar, Shiv Basant;Chawla, Bhavna;Bisht, Shilpa;Khan, Saima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4517-4525
    • /
    • 2016
  • Background: Sperm DNA damage is underlying aetiology of poor implantation and pregnancy rates but also affects health of offspring and may also result in denovo mutations in germ line and post fertilization. This may result in complex diseases, polygenic disorders and childhood cancers. Childhood cancer like retinoblastoma (RB) is more prevalent in developing countries and the incidence of RB has increased more than three fold in India in the last decade. Recent studies have documented increased incidence of cancers in children born to fathers who consume alcohol in excess and tobacco or who were conceived by assisted conception. The aetiology of childhood cancer and increased disease burden in these children is lin ked to oxidative stress (OS) and oxidative DNA damage( ODD) in sperm of their fathers. Though several antioxidants are in use to combat oxidative stress, the effect of majority of these formulations on DNA is not known. Yoga and meditation cause significant decline in OS and ODD and aid in regulating OS levels such that reactive oxygen speues meditated signal transduction, gene expression and several other physiological functions are not disrupted. Thus, this study aimed to analyze sperm ODD as a possible etiological factor in childhood cancer and role of simple life style interventions like yoga and meditation in significantly decreasing seminal oxidative stress and oxidative DNA damage and thereby decreasing incidence of childhood cancers. Materials and Methods: A total of 131 fathers of children with RB (non-familial sporadic heritable) and 50 controls (fathers of healthy children) were recruited at a tertiary center in India. Sperm parameters as per WHO 2010 guidelines and reactive oxygen species (ROS), DNA fragmentation index (DFI), 8-hydroxy-2'-deoxy guanosine (8-OHdG) and telomere length were estimated at day 0, and after 3 and 6 months of intervention. We also examined the compliance with yoga and meditation practice and smoking status at each follow-up. Results: The seminal mean ROS levels (p<0.05), sperm DFI (p<0.001), 8-OHdG (p<0.01) levels were significantly higher in fathers of children with RB, as compared to controls and the relative mean telomere length in the sperm was shorter. Levels of ROS were significantly reduced in tobacco users (p<0.05) as well as in alcoholics (p<0.05) after intervention. DFI reduced significantly (p<0.05) after 6 months of yoga and meditation practice in all groups. The levels of oxidative DNA damage marker 8-OHdG were reduced significantly after 3 months (p<0.05) and 6 months (p<0.05) of practice. Conclusions: Our results suggest that OS and ODD DNA may contribute to the development of childhood cancer. This may be due to accumulation of oxidized mutagenic base 8OHdG, and elevated MDA levels which results in MDA dimers which are also mutagenic, aberrant methylation pattern, altered gene expression which affect cell proliferation and survival through activation of transcription factors. Increased mt DNA mutations and aberrant repair of mt and nuclear DNA due to highly truncatred DNA repair mechanisms all contribute to sperm genome hypermutability and persistant oxidative DNA damage. Oxidative stress is also associated with genome wide hypomethylation, telomere shortening and mitochondrial dysfunction leading to genome hypermutability and instability. To the best of our knowledge, this is the first study to report decline in OS and ODD and improvement in sperm DNA integrity following adoption of meditation and yoga based life style modification.This may reduce disease burden in next generation and reduce incidence of childhood cancers.

Usability of DNA Sequence Data: from Taxonomy over Barcoding to Field Detection. A Case Study of Oomycete Pathogens

  • Choi, Young-Joon;Thines, Marco
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.41-41
    • /
    • 2015
  • Oomycetes belong to the kingdom Straminipila, a remarkably diverse group which includes brown algae and planktonic diatoms, although they have previously been classified under the kingdom Fungi. These organisms have evolved both saprophytic and pathogenic lifestyles, and more than 60% of the known species are pathogens on plants, the majority of which are classified into the order Peronosporales (includes downy mildews, Phytophthora, and Pythium). Recent phylogenetic investigations based on DNA sequences have revealed that the diversity of oomycetes has been largely underestimated. Although morphology is the most valuable criterion for their identification and diversity, morphological species identification is time-consuming and in some groups very difficult, especially for non-taxonomists. DNA barcoding is a fast and reliable tool for identification of species, enabling us to unravel the diversity and distribution of oomycetes. Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The mitochondrial cox2 gene has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. To determine which out of cox1 or cox2 is best suited as universal oomycete barcode, we compared these two genes in terms of (1) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (2) in terms of sequence polymorphism, intra- and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding type material. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. Including the two barcoding markers, ITS rDNA and cox2 mtDNA, the multi-locus phylogenetic analyses were performed to resolve two complex clades, Bremia lactucae (lettuce downy mildew) and Peronospora effuse (spinach downy mildew) at the species level and to infer evolutionary relationships within them. The approaches discriminated all currently accepted species and revealed several previously unrecognized lineages, which are specific to a host genus or species. The sequence polymorphisms were useful to develop a real-time quantitative PCR (qPCR) assay for detection of airborne inoculum of B. lactucae and P. effusa. Specificity tests revealed that the qPCR assay is specific for detection of each species. This assay is sensitive, enabling detection of very low levels of inoculum that may be present in the field. Early detection of the pathogen, coupled with knowledge of other factors that favor downy mildew outbreaks, may enable disease forecasting for judicious timing of fungicide applications.

  • PDF

Microarray Analysis of the Gene Expression Profile in Diethylnitrosamine-induced Liver Tumors in Mice

  • Jung Eun-Soo;Park Jung-Duck;Ryu Doug-Young
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.4
    • /
    • pp.134-142
    • /
    • 2005
  • Liver cancer is a leading cause of tumor-related mortality, Diethylnitrosamine (DEN) is one of the most extensively studied hepatic carcinogens to date. In this study, the mRNA expression profile in DEN-induced liver tumors in mice was analyzed using DNA microarrays. We report increased expression of genes that participate in hypoxia response, including metallothionein 1 (Mt1), metallothionein 2 (Mt2), fatty acid synthase (Fasn), transferrin (Trf), adipose differentiation-related Protein (AdfP) and ceruloplasmin (CP), as well as those involved in predisposition and development of cancers, such as cytochrome P450 2A5 (Cyp2a5), alpha 2-HS-glycoprotein (Ahsg) and Jun-B oncogene (Junb). The hepatic iron regulatory peptide, hepcidin (Hampl), was downregulated in DEN-stimulated liver tumors. Expression of tumor suppressor genes, such as tripartite motif protein 13 (Trim13), was decreased under these conditions. The data collectively indicate that DEN-induced tumor development can be exploited as a possible model for liver cancer, since this process involves various genes with important functions in hepatic carcinogenesis.

  • PDF

Usefulness of Biochemical Analysis for Human Skeletal Remains Assigned to the Joseon Dynasty in Oknam-ri Site in Seocheon, Korea (조선시대 인골에 대한 생화학적 분석의 유용성: 서천군 옥남리 회곽묘 출토 인골을 중심으로)

  • Kang, So-Yeong;Kwon, Eun-Sil;Moon, Eun-Jung;Cho, Eun-Min;Seo, Min-Seok;Kim, Yun-Ji;Jee, Sang-Hyun
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.95-107
    • /
    • 2010
  • Biochemical research was carried out on 4 human skeletal remains from historical lime-layered tombs assigned to the Joseon Dynasty in Oknam-ri, Seocheon. The preservation of femur was evaluated by stereoscopic microscopy and scanning electron microscopy. Most of specimens showed good histological preservation. The histological results proved to be a good potentiality for biochemical analysis using bio-molecules. The amelogenin gene and mitochondrial DNA (mtDNA) analyses revealed that three specimens perhaps have maternal consanguinity due to sharing with mtDNA haplogroup D4b1, and two specimens buried in the same tomb were a couple in Gatjaegol site. Carbon and nitrogen stable isotope analysis indicated that four deads diet were built around C3 plant as rice, barley, wheat and bean. In this study we characterized genetic and diet features from the social stratum who could make lime-layered tombs during period of the Joseon Dynasty. The results suggest that biochemical research using the human skeletal remains from the Joseon Dynasty has the great potential and reasonable value for archaeology, anthropology, and population genetics.

Intra-, Inter-specific Variation of Korean Rana (Amphibia: Ranidae) Based on the Partial Sequence of Mitochondrial 16S rDNA (미토콘드리아 16S rDNA부분 염기서열을 이용한 한국산 개구리 속(Amphibia: Ranidae)의 종간, 종내 변이에 대한 연구)

  • 송재영;신정아;장민호;윤병수;정규회
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.66-74
    • /
    • 2004
  • In order to clarify intra-and inter-specific variation of Korean Rana species, the partial DNA sequences of mitochondrial 16S rDNA gene were determined from 6 Korean and 1 Japanese Rana species, DNA sequences from Korean and Japanese species were comparison-analysed within, and also with the sequences from three species of Japanese brown frogs. DNA similarities were calculated as 91.3∼97.3% among brown frog (R. amurensis coreana, R. dybowskii and R. huanrenensis), as 96.11∼97.26% among pond frogs (R. nigromaculata and R. planeyi chosenica). Genetic distance of pond frog and wrinkle fyog (R. rugosa) were near than that of pond frog and brown frog. Two clusters were formed brown frogs and the other group by neigh-bor-joining and maximum-likelihood analysis, also the populations of R. nigromaculata were well distinguished between Korean peninsula and Korean island. But result from maximum-likelihood analysis slightly differed from neighbor-joining to cluster of R. rugosa. Further analyses for their population will be necessary to study the phylogenetic status.