• Title/Summary/Keyword: moving-average model

Search Result 427, Processing Time 0.024 seconds

Estimation of Shared Bicycle Demand Using the SARIMAX Model: Focusing on the COVID-19 Impact of Seoul (SARIMAX 모형을 이용한 공공자전거 수요추정과 평가: 서울시의 COVID-19 영향을 중심으로)

  • Hong, Jungyeol;Han, Eunryong;Choi, Changho;Lee, Minseo;Park, Dongjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.10-21
    • /
    • 2021
  • This study analyzed how external variables, such as the supply policy of shared bicycles and the spread of infectious diseases, affect the demand for shared bicycle use in the COVID-19 era. In addition, this paper presents a methodology for more accurate predictions. The Seasonal Auto-Regulatory Integrated Moving Average with Exogenous stressors methodology was applied to capture the effects of exogenous variables on existing time series models. The exogenous variables that affected the future demand for shared bicycles, such as COVID-19 and the supply of public bicycles, were statistically significant. As a result, from the supply volume and COVID-19 outbreak according to the scenario, it was estimated that approximately 46,000 shared bicycles would be supplied by 2022, and the COVID-19 cases would continue to be at the current level. In addition, approximately 32 million and 45 million units per year will be needed in 2021 and 2024, respectively.

Performance Comparison of Reinforcement Learning Algorithms for Futures Scalping (해외선물 스캘핑을 위한 강화학습 알고리즘의 성능비교)

  • Jung, Deuk-Kyo;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.697-703
    • /
    • 2022
  • Due to the recent economic downturn caused by Covid-19 and the unstable international situation, many investors are choosing the derivatives market as a means of investment. However, the derivatives market has a greater risk than the stock market, and research on the market of market participants is insufficient. Recently, with the development of artificial intelligence, machine learning has been widely used in the derivatives market. In this paper, reinforcement learning, one of the machine learning techniques, is applied to analyze the scalping technique that trades futures in minutes. The data set consists of 21 attributes using the closing price, moving average line, and Bollinger band indicators of 1 minute and 3 minute data for 6 months by selecting 4 products among futures products traded at trading firm. In the experiment, DNN artificial neural network model and three reinforcement learning algorithms, namely, DQN (Deep Q-Network), A2C (Advantage Actor Critic), and A3C (Asynchronous A2C) were used, and they were trained and verified through learning data set and test data set. For scalping, the agent chooses one of the actions of buying and selling, and the ratio of the portfolio value according to the action result is rewarded. Experiment results show that the energy sector products such as Heating Oil and Crude Oil yield relatively high cumulative returns compared to the index sector products such as Mini Russell 2000 and Hang Seng Index.

Crossing Dynamics of Leader-guided Two Flocks (우두머리가 있는 두 생물무리의 가로지르기 동역학)

  • Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.37-43
    • /
    • 2010
  • In field, one can observe without difficulties that two flocks are intersected or combined with each other. For example, a fish flock in a stream separates into two part by obstacles (e.g. stone) and rejoins behind the obstacles. The dynamics of two flocks guided by their leader were studied in the situation where the flocks cross each other with a crossing angle, ${\theta}$, between their moving directions. Each leader is unaffected by its flock members whereas each member is influenced by its leader and other members. To understand the dynamics, I investigated the order parameter, ${\phi}$, defined by the absolute value of the average unit velocity of the flocks' members. When the two flocks were encountered, the first peak in ${\phi}$ was appeared due to the breaking of the flocks' momentum balance. When the flocks began to separate, the second peak in ${\phi}$ was observed. Subsequently, erratic peaks were emerged by some individuals that were delayed to rejoin their flock. The amplitude of the two peaks, $d_1$ (first) and $d_2$ (second), were measured. Interestingly, they exhibited a synchronized behavior for different ${\theta}$. This simulation model can be a useful tool to explore animal behavior and to develop multi-agent robot systems.

Statistical Techniques to Detect Sensor Drifts (센서드리프트 판별을 위한 통계적 탐지기술 고찰)

  • Seo, In-Yong;Shin, Ho-Cheol;Park, Moon-Ghu;Kim, Seong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.103-112
    • /
    • 2009
  • In a nuclear power plant (NPP), periodic sensor calibrations are required to assure sensors are operating correctly. However, only a few faulty sensors are found to be calibrated. For the safe operation of an NPP and the reduction of unnecessary calibration, on-line calibration monitoring is needed. In this paper, principal component-based Auto-Associative support vector regression (PCSVR) was proposed for the sensor signal validation of the NPP. It utilizes the attractive merits of principal component analysis (PCA) for extracting predominant feature vectors and AASVR because it easily represents complicated processes that are difficult to model with analytical and mechanistic models. With the use of real plant startup data from the Kori Nuclear Power Plant Unit 3, SVR hyperparameters were optimized by the response surface methodology (RSM). Moreover the statistical techniques are integrated with PCSVR for the failure detection. The residuals between the estimated signals and the measured signals are tested by the Shewhart Control Chart, Exponentially Weighted Moving Average (EWMA), Cumulative Sum (CUSUM) and generalized likelihood ratio test (GLRT) to detect whether the sensors are failed or not. This study shows the GLRT can be a candidate for the detection of sensor drift.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

Prediction of Changes in Habitat Distribution of the Alfalfa Weevil (Hypera postica) Using RCP Climate Change Scenarios (RCP 기후변화 시나리오 따른 알팔파바구미(Hypera postica)의 서식지 분포 변화 예측)

  • Kim, Mi-Jeong;Lee, Heejo;Ban, Yeong-Gyu;Lee, Soo-Dong;Kim, Dong Eon
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.127-135
    • /
    • 2018
  • Climate change can affect variables related to the life cycle of insects, including growth, development, survival, reproduction and distribution. As it encourages alien insects to rapidly spread and settle, climate change is regarded as one of the direct causes of decreased biodiversity because it disturbed ecosystems and reduces the population of native species. Hypera postica caused a great deal of damage in the southern provinces of Korea after it was first identified on Jeju lsland in the 1990s. In recent years, the number of individuals moving to estivation sites has concerned scientists due to the crop damage and national proliferation. In this study, we examine how climate change could affect inhabitation of H. postica. The MaxEnt model was applied to estimate potential distributions of H. postica using future climate change scenarios, namely, representative concentration pathway (RCP) 4.5 and RCP 8.5. As variables of the model, this study used six bio-climates (bio3, bio6, bio10, bio12, bio14, and bio16) in consideration of the ecological characteristics of 66 areas where inhabitation of H. postica was confirmed from 2015 to 2017, and in consideration of the interrelation between prediction variables. The fitness of the model was measured at a considered potentially useful level of 0.765 on average, and the warmest quarter has a high contribution rate of 60-70%. Prediction models (RCP 4.5 and RCP 8.5) results for the year 2050 and 2070 indicated that H. postica habitats are projected to expand across the Korean peninsula due to increasing temperatures.

Selection Model of System Trading Strategies using SVM (SVM을 이용한 시스템트레이딩전략의 선택모형)

  • Park, Sungcheol;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.59-71
    • /
    • 2014
  • System trading is becoming more popular among Korean traders recently. System traders use automatic order systems based on the system generated buy and sell signals. These signals are generated from the predetermined entry and exit rules that were coded by system traders. Most researches on system trading have focused on designing profitable entry and exit rules using technical indicators. However, market conditions, strategy characteristics, and money management also have influences on the profitability of the system trading. Unexpected price deviations from the predetermined trading rules can incur large losses to system traders. Therefore, most professional traders use strategy portfolios rather than only one strategy. Building a good strategy portfolio is important because trading performance depends on strategy portfolios. Despite of the importance of designing strategy portfolio, rule of thumb methods have been used to select trading strategies. In this study, we propose a SVM-based strategy portfolio management system. SVM were introduced by Vapnik and is known to be effective for data mining area. It can build good portfolios within a very short period of time. Since SVM minimizes structural risks, it is best suitable for the futures trading market in which prices do not move exactly the same as the past. Our system trading strategies include moving-average cross system, MACD cross system, trend-following system, buy dips and sell rallies system, DMI system, Keltner channel system, Bollinger Bands system, and Fibonacci system. These strategies are well known and frequently being used by many professional traders. We program these strategies for generating automated system signals for entry and exit. We propose SVM-based strategies selection system and portfolio construction and order routing system. Strategies selection system is a portfolio training system. It generates training data and makes SVM model using optimal portfolio. We make $m{\times}n$ data matrix by dividing KOSPI 200 index futures data with a same period. Optimal strategy portfolio is derived from analyzing each strategy performance. SVM model is generated based on this data and optimal strategy portfolio. We use 80% of the data for training and the remaining 20% is used for testing the strategy. For training, we select two strategies which show the highest profit in the next day. Selection method 1 selects two strategies and method 2 selects maximum two strategies which show profit more than 0.1 point. We use one-against-all method which has fast processing time. We analyse the daily data of KOSPI 200 index futures contracts from January 1990 to November 2011. Price change rates for 50 days are used as SVM input data. The training period is from January 1990 to March 2007 and the test period is from March 2007 to November 2011. We suggest three benchmark strategies portfolio. BM1 holds two contracts of KOSPI 200 index futures for testing period. BM2 is constructed as two strategies which show the largest cumulative profit during 30 days before testing starts. BM3 has two strategies which show best profits during testing period. Trading cost include brokerage commission cost and slippage cost. The proposed strategy portfolio management system shows profit more than double of the benchmark portfolios. BM1 shows 103.44 point profit, BM2 shows 488.61 point profit, and BM3 shows 502.41 point profit after deducting trading cost. The best benchmark is the portfolio of the two best profit strategies during the test period. The proposed system 1 shows 706.22 point profit and proposed system 2 shows 768.95 point profit after deducting trading cost. The equity curves for the entire period show stable pattern. With higher profit, this suggests a good trading direction for system traders. We can make more stable and more profitable portfolios if we add money management module to the system.

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF

The Effects of Environmental Dynamism on Supply Chain Commitment in the High-tech Industry: The Roles of Flexibility and Dependence (첨단산업의 환경동태성이 공급체인의 결속에 미치는 영향: 유연성과 의존성의 역할)

  • Kim, Sang-Deok;Ji, Seong-Goo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.2
    • /
    • pp.31-54
    • /
    • 2007
  • The exchange between buyers and sellers in the industrial market is changing from short-term to long-term relationships. Long-term relationships are governed mainly by formal contracts or informal agreements, but many scholars are now asserting that controlling relationship by using formal contracts under environmental dynamism is inappropriate. In this case, partners will depend on each other's flexibility or interdependence. The former, flexibility, provides a general frame of reference, order, and standards against which to guide and assess appropriate behavior in dynamic and ambiguous situations, thus motivating the value-oriented performance goals shared between partners. It is based on social sacrifices, which can potentially minimize any opportunistic behaviors. The later, interdependence, means that each firm possesses a high level of dependence in an dynamic channel relationship. When interdependence is high in magnitude and symmetric, each firm enjoys a high level of power and the bonds between the firms should be reasonably strong. Strong shared power is likely to promote commitment because of the common interests, attention, and support found in such channel relationships. This study deals with environmental dynamism in high-tech industry. Firms in the high-tech industry regard it as a key success factor to successfully cope with environmental changes. However, due to the lack of studies dealing with environmental dynamism and supply chain commitment in the high-tech industry, it is very difficult to find effective strategies to cope with them. This paper presents the results of an empirical study on the relationship between environmental dynamism and supply chain commitment in the high-tech industry. We examined the effects of consumer, competitor, and technological dynamism on supply chain commitment. Additionally, we examined the moderating effects of flexibility and dependence of supply chains. This study was confined to the type of high-tech industry which has the characteristics of rapid technology change and short product lifecycle. Flexibility among the firms of this industry, having the characteristic of hard and fast growth, is more important here than among any other industry. Thus, a variety of environmental dynamism can affect a supply chain relationship. The industries targeted industries were electronic parts, metal product, computer, electric machine, automobile, and medical precision manufacturing industries. Data was collected as follows. During the survey, the researchers managed to obtain the list of parts suppliers of 2 companies, N and L, with an international competitiveness in the mobile phone manufacturing industry; and of the suppliers in a business relationship with S company, a semiconductor manufacturing company. They were asked to respond to the survey via telephone and e-mail. During the two month period of February-April 2006, we were able to collect data from 44 companies. The respondents were restricted to direct dealing authorities and subcontractor company (the supplier) staff with at least three months of dealing experience with a manufacture (an industrial material buyer). The measurement validation procedures included scale reliability; discriminant and convergent validity were used to validate measures. Also, the reliability measurements traditionally employed, such as the Cronbach's alpha, were used. All the reliabilities were greater than.70. A series of exploratory factor analyses was conducted. We conducted confirmatory factor analyses to assess the validity of our measurements. A series of chi-square difference tests were conducted so that the discriminant validity could be ensured. For each pair, we estimated two models-an unconstrained model and a constrained model-and compared the two model fits. All these tests supported discriminant validity. Also, all items loaded significantly on their respective constructs, providing support for convergent validity. We then examined composite reliability and average variance extracted (AVE). The composite reliability of each construct was greater than.70. The AVE of each construct was greater than.50. According to the multiple regression analysis, customer dynamism had a negative effect and competitor dynamism had a positive effect on a supplier's commitment. In addition, flexibility and dependence had significant moderating effects on customer and competitor dynamism. On the other hand, all hypotheses about technological dynamism had no significant effects on commitment. In other words, technological dynamism had no direct effect on supplier's commitment and was not moderated by the flexibility and dependence of the supply chain. This study makes its contribution in the point of view that this is a rare study on environmental dynamism and supply chain commitment in the field of high-tech industry. Especially, this study verified the effects of three sectors of environmental dynamism on supplier's commitment. Also, it empirically tested how the effects were moderated by flexibility and dependence. The results showed that flexibility and interdependence had a role to strengthen supplier's commitment under environmental dynamism in high-tech industry. Thus relationship managers in high-tech industry should make supply chain relationship flexible and interdependent. The limitations of the study are as follows; First, about the research setting, the study was conducted with high-tech industry, in which the direction of the change in the power balance of supply chain dyads is usually determined by manufacturers. So we have a difficulty with generalization. We need to control the power structure between partners in a future study. Secondly, about flexibility, we treated it throughout the paper as positive, but it can also be negative, i.e. violating an agreement or moving, but in the wrong direction, etc. Therefore we need to investigate the multi-dimensionality of flexibility in future research.

  • PDF

Development of Traffic Volume Estimation System in Main and Branch Roads to Estimate Greenhouse Gas Emissions in Road Transportation Category (도로수송부문 온실가스 배출량 산정을 위한 간선 및 지선도로상의 교통량 추정시스템 개발)

  • Kim, Ki-Dong;Lee, Tae-Jung;Jung, Won-Seok;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.233-248
    • /
    • 2012
  • The national emission from energy sector accounted for 84.7% of all domestic emissions in 2007. Of the energy-use emissions, the emission from mobile source as one of key categories accounted for 19.4% and further the road transport emission occupied the most dominant portion in the category. The road transport emissions can be estimated on the basis of either the fuel consumed (Tier 1) or the distance travelled by the vehicle types and road types (higher Tiers). The latter approach must be suitable for simultaneously estimating $CO_2$, $CH_4$, and $N_2O$ emissions in local administrative districts. The objective of this study was to estimate 31 municipal GHG emissions from road transportation in Gyeonggi Province, Korea. In 2008, the municipalities were consisted of 2,014 towns expressed as Dong and Ri, the smallest administrative district unit. Since mobile sources are moving across other city and province borders, the emission estimated by fuel sold is in fact impossible to ensure consistency between neighbouring cities and provinces. On the other hand, the emission estimated by distance travelled is also impossible to acquire key activity data such as traffic volume, vehicle type and model, and road type in small towns. To solve the problem, we applied a hierarchical cluster analysis to separate town-by-town road patterns (clusters) based on a priori activity information including traffic volume, population, area, and branch road length obtained from small 151 towns. After identifying 10 road patterns, a rule building expert system was developed by visual basic application (VBA) to assort various unknown road patterns into one of 10 known patterns. The expert system was self-verified with original reference information and then objects in each homogeneous pattern were used to regress traffic volume based on the variables of population, area, and branch road length. The program was then applied to assign all the unknown towns into a known pattern and to automatically estimate traffic volumes by regression equations for each town. Further VKT (vehicle kilometer travelled) for each vehicle type in each town was calculated to be mapped by GIS (geological information system) and road transport emission on the corresponding road section was estimated by multiplying emission factors for each vehicle type. Finally all emissions from local branch roads in Gyeonggi Province could be estimated by summing up emissions from 1,902 towns where road information was registered. As a result of the study, the GHG average emission rate by the branch road transport was 6,101 kilotons of $CO_2$ equivalent per year (kt-$CO_2$ Eq/yr) and the total emissions from both main and branch roads was 24,152 kt-$CO_2$ Eq/yr in Gyeonggi Province. The ratio of branch roads emission to the total was 0.28 in 2008.