• 제목/요약/키워드: moving wheel

검색결과 199건 처리시간 0.029초

잔류응력 변화를 고려한 철도차량 차륜의 접촉피로 수명평가 (A Study on the Contact Fatigue Life Evaluation for Railway Wheels Considering Residual Stress Variation)

  • 서정원;구병춘;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1391-1398
    • /
    • 2004
  • Railway wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles became more severe in recent years due to the increase of speed. Therefore, a more precise evaluation of wheelset life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking heat are two main mechanisms of the railway wheel failure. In this paper, an evaluation procedure for the contact fatigue life of railway wheel is proposed. One of the main sources of the contact zone failure is the residual stress. The residual stress on wheel is formed during the manufacturing process which includes a heat treatment, and then is changed by contact stress developed by wheel/rail contact and thermal stress induced by braking. Also, the cyclic stress history for fatigue analysis is determined by applying finite elements analysis for the moving contact load. The objective of this paper is to estimate fatigue life by considering residual stress due to heat treatment, braking and repeated contact load, respectively.

도로 주행환경 변화와 핸들종류에 따른 운전자 부하 및 행동특성 (Driver Characteristics and Workload according to Changing Driving Environment and Types of Steering Wheel)

  • 전용욱;대문수
    • 대한인간공학회지
    • /
    • 제28권2호
    • /
    • pp.9-16
    • /
    • 2009
  • The aim of this study was to evaluate the effects of the driving performance and workload according to changing driving environment and types of steering wheel. Twelve drivers who participated in this study consisted of two groups; six Japanese as the left-lane drivers who was accustomed to driving on left-hand side of the road, and six Europeans, Americans, and Korean as the right-lane drivers who was accustomed to driving on right-hand side of the road. They were asked to operate a driving simulator while using two different types of steering wheel (for the left-hand side driving and the right-hand side driving). During the experiment, a range of data were measured including driving performance, mental workload, and eye movements which were recorded in order to identify the amount of time looking towards the in-vehicle route guidance. Results indicated that the use of the steering wheel by parallel moving led to increase high attentional demand and worse glance behavior to traffic signs for the left-lane drivers. In the case of the right-lane drivers, the effects by changing driving direction were more effective than the types of steering wheel due to their habit or traits.

4족 링크 구조의 감시용 로봇 시스템 개발 (Development of Monitoring Robot with Quadruped Link Mechanism)

  • 정기범;박병훈;전병준;김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.46-46
    • /
    • 2000
  • A quadruped monitoring robot is introduced. The robot has several features that poses arbitrary position thanks to a 4-wheel hive mechanism, transmits an image and command data via RF wireless communication, and moreover, the imaged date are transferred through a network communication. The robot plays a role in monitoring what is happening around the robot and covers wide range due to a moving camera operated by the 4-wheel mechanism. The robot system can be applied k versatile models based the distinguished techniques introduced in this paper

  • PDF

연속철근콘크리트 도로포장의 거동에 종방향 철근비가 미치는 영향 (Effect of Longitudinal Steel Ratio on Behavior of CRCP System)

  • 김성민;조병휘;권순민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.58-61
    • /
    • 2006
  • The effect of the steel ratio on the behavior of continuously reinforced concrete pavement (CRCP) under moving wheel loads and environmental loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered: (1) to evaluate the load transfer efficiency (LTE) at transverse cracks; (2) to investigate strains in CRCP when the system is subjected to moving vehicle loads; (3) and to investigate the time histories of the crack spacing variations. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests. The strains in the concrete slab and the bond braker layer under moving vehicle loads were obtained using embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio. However, the changes in the crack spacings are affected by the steel ratio.

  • PDF

A model for investigating vehicle-bridge interaction under high moving speed

  • Liu, Hanyun;Yu, Zhiwu;Guo, Wei;Han, Yan
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.627-635
    • /
    • 2021
  • The speed of rail vehicles become higher and higher over two decades, and China has unveiled a prototype high-speed train in October 2020 that has been able to reach 400 km/h. At such high speeds, wheel-rail force items that had previously been ignored in common computational model should be reevaluated and reconsidered. Aiming at this problem, a new model for investigating the vehicle-bridge interaction at high moving speed is proposed. Comparing with the common model, the new model was more accurate and applicable, because it additionally considers the second-order pseudo-inertia forces effect and its modeling equilibrium position was based on the initial deformed curve of bridge, which could include the influences of temperature, pre-camber, shrinkage and creep deformation, and pier uneven settlement, etc. Taking 5 km/h as the speed interval, the dynamic responses of the classical vehicle-bridge system in the speed range of 5 km/h to 400 km/h are studied. The results show that ignoring the second-order pseudo-inertia force will underestimate the dynamic response of vehicle-bridge system and make the high-speed railway bridge structure design unsafe.

단일곡률궤적을 이용한 이동물체의 포획 알고리즘 (A Capturing Algorithm of Moving Object using Single Curvature Trajectory)

  • 최병석;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.145-153
    • /
    • 2006
  • An optimal capturing trajectory for a moving object is proposed in this paper based on the observation that a single-curvature path is more accurate than double-or triple-curvature paths. Moving distance, moving time, and trajectory error are major factors considered in deciding an optimal path for capturing the moving object. That is, the moving time and distance are minimized while the trajectory error is maintained as small as possible. The three major factors are compared for the single and the double curvature trajectories to show superiority of the single curvature trajectory. Based upon the single curvature trajectory, a kinematics model of a mobile robot is proposed to follow and capture the moving object, in this paper. A capturing scenario can be summarized as follows: 1. Motion of the moving object has been captured by a CCD camera., 2. Position of the moving object has been estimated using the image frames, and 3. The mobile robot tries to follow the moving object along the single curvature trajectory which matches positions and orientations of the moving object and the mobile robot at the final moment. Effectiveness of the single curvature trajectory modeling and capturing algorithm has been proved, through simulations and real experiments using a 2-DOF wheel-based mobile robot.

이동하중을 고려한 교량/토공 접속부 보강방안별 변형특성 평가 (Evaluation of Deformation Characteristics for Bridge/Earthwork Transition Reinforcement Methods Considering Moving Load)

  • 이일화;이성진;이수형;강태호
    • 한국철도학회논문집
    • /
    • 제13권3호
    • /
    • pp.298-303
    • /
    • 2010
  • 접속부는 교량에서 토공, 터널에서 토공, 콘크리트궤도에서 자갈도상궤도로 옮겨가는 구간과 같이 궤도 하부구조의 지지강성이 변화하는 구간으로 경부고속철도에서는 터널 및 교량 구조물 접속부만 450여개에 달한다. 접속부의 상태는 열차주행 안정성과 신뢰성에 큰 영향을 미치기 때문에 유지보수의 문제가 발생하지 않도록 모든 조치를 취할 필요가 있다. 이에 본 논문에서는 국내외에서 보편적으로 적용하고 있는 교량/토공 접속부 에서의 보강방안과 추가보강방안의 효과를 보다 합리적으로 검토하기 위하여 이동윤하중 재하방식의 수치해석을 수행하였다. 이동윤하중 재하방식은 열차바퀴를 실물로 모델링한 후 레일위에서 실시간으로 이동시켜 이때 발생하는 궤도 각 위치에서의 변형특성을 검토함으로써 시간영역에서의 상세해석 결과를 얻을 수 있다. 해석 대상은 고속철도에서 적용 가능한 접속부 보강방안 종류별 및 어프로치블럭의 연장별 변형특성이며 이를 통하여 현재 건설조건하에서의 접속부 보강효과를 검토하였다.

반발식 동전기 휠을 이용한 비접촉 반송 시스템의 변수 설계 (Parametric Design of Contact-Free Transportation System Using The Repulsive Electrodynamic Wheels)

  • 정광석
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.310-316
    • /
    • 2016
  • 도전성 평판에 부분적으로 걸쳐 회전하는 축형 동전기 휠을 구동원으로 이용하는 비접촉 반송 시스템을 제안한다. 회전하는 동전기 휠에는 3축력이 발생되는데 이 중 중력방향 힘과 횡방향 힘은 자기안정성을 갖고 있으므로 공간상에서 반송 시스템의 동적 안정성을 확보하기 위해서는 길이 방향 힘만을 제어하는 것으로 충분하다. 동전기 휠은 원주 방향을 따라 주기적으로 반복되는 극성을 갖는 영구자석으로 구성되어있으므로 기본 극의 기하학적 형상이나 극수 등은 안정성 여유에 큰 영향을 미친다. 또한 휠과 전도판간의 중첩된 영역 역시 횡방향으로의 강성을 결정하는 주요 인자이므로 본 논문에서는 안정성을 성능 지표로 휠을 구성하는 주요 설계 변수에 대한 민감도 해석을 수행한다. 얻어진 설계 값을 이용하여 제작된 시스템으로 휠을 포함하는 이동 개체의 수동적인 안정성을 실험적으로 검증한다.

복합 바퀴-궤도 메커니즘 기반의 소형 로봇 (A Small Robot Based on Hybrid Wheel-Track Mechanism)

  • 이장운;김병상;송재복
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.545-551
    • /
    • 2009
  • A small guard robot working indoors or outdoors can be used to report various information on its environment to an operator. The guard robot should be small-sized and lightweight to increase its portability. In addition, it should be able to overcome a relatively high obstacle to cope with various situations. To satisfy these requirements, this paper presents a small robot equipped with a novel hybrid wheel and track mechanism that can select wheels or tracks depending on the situation. The robot folds the tracks into the body in the wheel mode and only wheels are active with the tracks immobilized, which results in the fast moving speed. In the track mode, the tracks are extended to keep in contact with the ground. Furthermore, this research proposes the belt length maintenance mechanism by which the belt length is kept constant in either the wheel or track mode. Various experiments demonstrate that the proposed robot can move fast by using wheels on the smooth terrain and overcome obstacles by using tracks on the rough terrain.

메카넘 휠을 이용한 볼-봇의 슬립률 감소와 균형 및 주행제어 (Slip Ratio Reduction and Moving Balance Control of a Ball-bot using Mecanum Wheel)

  • 박영식;김수정;변수경;이장명
    • 로봇학회논문지
    • /
    • 제10권4호
    • /
    • pp.186-192
    • /
    • 2015
  • This paper proposes a robust balance and driving control for omni-directional ball robot(generally called ball-bot) with two axis mecanum wheel. Slip between ball and mecanum wheel actuator inevitably occurs along diagonal axis due to its instantaneous strong torque. In order to reduce and saturate slip, exact distance calculation scheme especially for rotational movement is essential. So this research solved Euler-Lagrange dynamics for proposed two axis ball robot based on practical mechanical modeling. Robust balance control was carried out by PID controller according to the pitch and roll angles of ball robot by using sensor fusion between AHRS and wheel encoder. Proposed PID controller enhances stability by reducing steady state error and settling time. Proposed slip control algorithm for omni-directional ball robot has been demonstrated by experiments for balance control and arbitrary driving control.