도로 네트워크 상의 이동 객체 궤적을 분석하기 위해서는 그것의 표현이 명확하게 정의되어야 한다. 도로 네트워크 상의 이동 객체 궤적을 표현하는 기존의 대부분의 방법들은 이동 객체 궤적을 그 궤적이 통과한 위치와 시간의 집합으로 복잡하게 표현한다. 이것은 이동 객체 궤적의 검색 등과 같은 분석을 처리할 시 많은 시간이 요구된다. 본 논문에서는 도로 네트워크 상의 관심 있는 지점(POI: Points of Interest)들에 초점을 두어 도로 네트워크 상의 이동 객체 궤적을 효율적으로 간략화 하는 방법을 제시한다. 본 논문에서 제시하는 방법은 도로 네트워크 상의 이동 객체 궤적이 통과한 POI의 수를 줄임으로써 궤적을 간략화 하며, 궤적이 간략화 된 후에도 그 궤적의 형태를 그대로 유지하도록 한다.
Similarity search in moving object trajectories is an active area of research. In this paper, we introduce a new concept of measure that computes spatial distance (similarity) between two trajectories of moving objects on road networks. In addition, we propose an algorithm that generates a sequence of matching edge pairs for two trajectories that ate to be compared and computes spatial distance between them which is non Euclidian in nature. With an example, we explain how our algorithm works to show spatial similarity between trajectories of moving objects in spatial network.
본 논문에서는 도로 네트워크에서 이동하는 객체들의 미래 경로를 예측하는 방안에 대하여 다룬다. 기존의 대부분 미래 예측 기법들은 유클리드 공간에서 이동하는 객체들을 대상으로 한다. 그러나 텔레매틱스 등 다양한 응용에서 객체들은 도로 네트워크 상에서 이동하는 경우가 많으므로 이를 위한 미래예측 방법이 요구된다. 본 연구에서는 질의 객체의 현재까지의 이동 궤적과 유사한 경향을 가지는 과거 궤적들을 분석함으로써 이 객체의 미래 경로를 예측하는 기법을 제안한다. 우선, 도로 네트워크의 특성을 반영하여 궤적들의 유사도를 측정하는 새로운 함수를 제안한다. 이 함수를 이용하여 주어진 이동 객체의 미래 경로를 다음과 같이 예측한다. 먼저, 이동 객체 데이터베이스 내의 과거 궤적들을 대상으로 주어진 질의 궤적과 유사한 부분 궤적을 갖는 후보 궤적들을 검색한다. 그 다음, 검색된 후보 궤적들의 현재 위치 이후부터 목적지까지의 이동 경로를 분석함으로써 객체의 미래 이동 경로를 예측한다. 작은 차이를 갖는 이동 경로들을 같은 그룹으로 간주함으로써 경로 예측의 정확성을 높이는 방안을 제안한다.
본 논문에서는 비디오 데이터가 지니는 이동 객체의 궤적(Moving Object's Trajectory)을 효과적으로 모델링할 수 있는 시공간 표현 기법(Spatio-Temporal Representation Scheme)과 궤적을 이용한 사용자 질의에 대해 효율적인 검색을 위한 새로운 시그니쳐 기반 접근 기법을 제안한다. 제안하는 시공간 표현 기법은 궤적을 기반으로 하는 내용 기반 검색(Content-based Retrieval)과 궤적에서 일어나는 위치 정보를 통해 얻어진 개념(의미)을 이용한 개념 기반 검색(Concept-based Retrieval)을 지원한다. 아울러, 제안하는 시그니쳐 기반 접근 기법은 데이터 파일을 직접 접근하기 전에 전체 시그니쳐들은 탐색하여 필터링을 수행한 후, 검색된 후보 시그니쳐들에 대해서만 디스크를 접근하기 때문에 순차 탐색에 비해 많은 수의 디스크 접근 횟수를 감소시킴으로써 검색 성능을 향상시킨다. 마지막으로, 성능 평가를 통해 제안하는 방법이 검색 효과(Retrieval Effectiveness) 및 효율(Retrieval Efficiency) 측면에서 기존의 방법인 Li나 Shan의 방법에 비해 우수함을 보인다.
Li Jing Jing;Lee Dong-Wook;You Byeong-Seob;Oh Young-Hwan;Bae Hae-Young
한국멀티미디어학회논문지
/
제9권12호
/
pp.1529-1541
/
2006
Moving objects have been widely employed in traffic and logistic applications. Spatio-temporal aggregations mainly describe the moving object's behavior in the spatial data warehouse. The previous works usually express the object moving in some certain region, but ignore the object often moving along as the trajectory. Other researches focus on aggregation and comparison of trajectories. They divide the spatial region into units which records how many times the trajectories passed in the unit time. It not only makes the storage space quite ineffective, but also can not maintain spatial data property. In this paper, a spatio-temporal aggregation index structure for moving object trajectory in constrained network is proposed. An extended B-tree node contains the information of timestamp and the aggregation values of trajectories with two directions. The network is divided into segments and then the spatial index structure is constructed. There are the leaf node and the non leaf node. The leaf node contains the aggregation values of moving object's trajectory and the pointer to the extended B-tree. And the non leaf node contains the MBR(Minimum Bounding Rectangle), MSAV(Max Segment Aggregation Value) and its segment ID. The proposed technique overcomes previous problems efficiently and makes it practicable finding moving object trajectory in the time interval. It improves the shortcoming of R-tree, and makes some improvement to the spatio-temporal data in query processing and storage.
이동객체에 관한 연구를 위하여서는 이동객체 데이터가 필요하다. 예를 들어 이동객체 질의처리 방법의 성능연구를 위하여서는 이동객체의 벤치마크 데이터가 있어야 실험이 가능하다. 이러한 이유로 도로나 실외 공간을 움직이는 가상의 이동객체를 성성하는 도구가 만들어졌다. 반면에 실내공간은 실외공간과 달리 독특한 특징을 가지고 있으며, 실내공간 이동객체 데이터 생성기는 이를 반영하여 만들어져야 한다. 지금까지 몇 개의 실내공간에 대한 이동객체 생성기가 개발되었으나, 이동궤적이 사실적이지 않은 문제점이 있다. 이러한 배경에서 본 논문에서는 실내공간의 가상적 이동객체를 생성하는 도구를 소개한다. 이 도구는 다음과 같은 특징을 가지고 있다. 첫번째, 이동객체는 보행자를 위하여 설정하였다. 두 번째로 다양한 이동객체의 요소를 변수모델로 표현할 수 있도록 하였다. 보행자의 수, 보행자 평균속도와 같이 단순한 것에서 보행자 사이의 최소거리, 이동 패턴과 같은 복잡한 내용을 사용자가 변수로 설정할 수 있도록 하였다. 세 번째로, 보행자의 현실적인 특징을 반영하도록 노력하였다. 그리고, 마직막으로 데이터의 상호운영성을 위하여 국제공간정보 표준인 IndoorGML로 표현된 실제 대규모 쇼핑몰의 실내공간을 대상으로 이동객체 데이터의 생성을 적용하여보았다.
본 논문은 궤적을 군집화하여 혼잡한 영상에서 이동 객체를 검출하는 방법을 제안한다. 제안하는 방법은 객체의 외형 정보에 기반한 기존의 방법들과는 달리 객체의 움직임 정보만을 이용해 이동 객체를 검출한다. 이를 위하여 입력 영상의 매 프레임에서 특징점을 추출하며, 인접한 프레임간의 추적 과정을 통하여 특징점들의 궤적을 생성한다. 동일 객체에서 얻어진 궤적들은 유사한 움직임을 보일 것이라는 가정 하에 군집화 과정을 통하여 이동 객체를 검출한다. 궤적들의 군집화를 위하여 특징점 간의 위치, 움직임, 연속성에 기반한 에너지 함수로 궤적 간 유사도를 측정하였으며, conditional random fields (CRFs)를 이용하여 최적의 군집을 결정하였다. 기존의 궤적 군집화를 통한 이동 객체 검출 방법이 군집화 과정에서 한번 잘못 분류된 궤적은 잘못된 결과를 생성하는 것과는 달리, 제안한 방법에서는 군집화가 CRFs 상에서 에너지 최소화에 의해 수행되기 때문에 잘못 분류된 궤적이 반복 과정에서 다시 올바른 군집으로 재배열되는 것이 가능하다. 제안한 방법의 성능 측정을 위하여 서로 다른 혼잡도를 가지는 세 개의 영상을 이용하였으며, 약 94%의 검출률과 7%의 허위 경보율을 나타내었다.
Moving objects in video data are main elements for video analysis and retrieval. In this paper, we propose a new algorithm for tracking and segmenting moving objects in color image sequences that include complex camera motion such as zoom, pan and rotating. The Proposed algorithm is based on the Mean-shift color segmentation and stochastic region matching method. For segmenting moving objects, each sequence is divided into a set of similar color regions using Mean-shift color segmentation algorithm. Each segmented region is matched to the corresponding region in the subsequent frame. The motion vector of each matched region is then estimated and these motion vectors are summed to estimate global motion. Once motion vectors are estimated for all frame of video sequences, independently moving regions can be segmented by comparing their trajectories with that of global motion. Finally, segmented regions are merged into the independently moving object by comparing the similarities of trajectories, positions and emerging period. The experimental results show that the proposed algorithm is capable of segmenting independently moving objects in the video sequences including complex camera motion.
KSII Transactions on Internet and Information Systems (TIIS)
/
제3권5호
/
pp.527-547
/
2009
Moving object management is widely used in traffic, logistic and data mining applications in ubiquitous environments. It is required to analyze spatio-temporal data and trajectories for moving object management. In this paper, we proposed a novel index structure for spatio-temporal aggregation of trajectory in a constrained network, named aCN-RB-tree. It manages aggregation values of trajectories using a constraint network-based index and it also supports direction of trajectory. An aCN-RB-tree consists of an aR-tree in its center and an extended B-tree. In this structure, an aR-tree is similar to a Min/Max R-tree, which stores the child nodes' max aggregation value in the parent node. Also, the proposed index structure is based on a constrained network structure such as a FNR-tree, so that it can decrease the dead space of index nodes. Each leaf node of an aR-tree has an extended B-tree which can store timestamp-based aggregation values. As it considers the direction of trajectory, the extended B-tree has a structure with direction. So this kind of aCN-RB-tree index can support efficient search for trajectory and traffic zone. The aCN-RB-tree can find a moving object trajectory in a given time interval efficiently. It can support traffic management systems and mining systems in ubiquitous environments.
차량과 같이 시간의 흐름에 따라 위치가 변경되는 객체를 이동체라 한다. 이동체의 과거 궤적은 시간이 지남에 따라 누적되므로 대용량 정보가 된다. 대용량 궤적 정보를 저장하는 이동체 데이터베이스에서 효율적으로 궤적을 검색하기 위해서는 색인이 필요하다. 특히 궤적을 선택하는 과정(영역 질의)과 선택된 궤적의 일부분을 추출하는 과정(궤적 질의)으로 이루어진 복합 질의를 처리하기 위해서는 궤적 보존을 지원하는 TB-tree와 같은 색인 구조가 적합하다. 그러나 TB-tree는 비단말 노드에서의 공간적인 특성을 고려하지 못하여 영역 질의시 불필요한 노드 접근이 발생하는 문제가 있다. 이 논문에서는 영역 질의를 효율적으로 처리하기 위하여, TB-tree의 비단말 노드의 사장 영역을 감소시킬 수 있는 분할정책을 제안하고 이를 TB-tree에 적용하여 구현한다. 이 논문에서 제안하는 분할 정책은 높은 공간 활용도, 효과적인 궤적 추출과 같은 TB-tree의 장점을 유지하면서 비단말 노드의 사장 영역을 줄임으로써 영역 질의에 효과적인 특징이 있다. 제안된 분할 정책은 성능평가를 통하여 기존의 TB-tree보다 영역 질의에서 우수함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.